Wavelet representations and Fock space on positive matrices

被引:15
作者
Jorgensen, PET [1 ]
Kribs, DW [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Hilbert space; biorthogonal wavelet; Cuntz algebra; completely positive map; Fock space; creation operators;
D O I
10.1016/S0022-1236(02)00026-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every biorthogonal wavelet determines a representation by operators on Hilbert space satisfying simple identities, which captures the established relationship between orthogonal wavelets and Cuntz-algebra representations in that special case. Each of these representations is shown to have tractable finite-dimensional co-invariant doubly cyclic subspaces. Further, motivated by these representations, we introduce a general Fock-space Hilbert space construction which yields creation operators containing the Cuntz-Toeplitz isometrics as a special case. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:526 / 559
页数:34
相关论文
共 38 条
[1]  
ARVESON W, 1972, ACTA MATH-UPPSALA, V128, P271, DOI 10.1007/BF02392166
[2]  
Arveson W. B., 1969, ACTA MATH, V123, P141, DOI 10.1007/BF02392388
[3]  
BAGGETT L, 1999, CONT MATH, V247, P17
[4]  
BAGGETT LW, 1999, CONT MATH, V247
[5]   AN EXAMPLE OF A GENERALIZED BROWNIAN-MOTION [J].
BOZEJKO, M ;
SPEICHER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (03) :519-531
[6]  
Brandolini L., 1999, CONT MATH, V247, P75
[7]   Endomorphisms of B(H) .2. Finely correlated states on O-n [J].
Bratteli, O ;
Jorgensen, PET .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (02) :323-373
[8]  
Bratteli O, 2000, J OPERAT THEOR, V43, P97
[9]  
BRATTELI O, 2001, P INT C WAV AN APPL, P35
[10]  
Bratteli O., 2002, APPL NUMERICAL HARMO