Determinants of postabsorptive endogenous glucose output in non-diabetic subjects

被引:41
作者
Natali, A [1 ]
Toschi, E [1 ]
Camastra, S [1 ]
Gastaldelli, A [1 ]
Groop, L [1 ]
Ferrannini, E [1 ]
机构
[1] CNR, Inst Clin Physiol, I-56126 Pisa, Italy
关键词
endogenous glucose production; insulin resistance; insulin;
D O I
10.1007/s001250051522
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis. To gain insight into the physiologic determinants of postabsorptive endogenous glucose output (EGO) in humans. Methods. We analysed the data of 344 non-diabetic subjects (212 men and 132 women) with a wide range of age (18-85 years) and body mass index (15-55 kg/m(2)) who participated in the European Group for the Study of Insulin Resistance (EGIR) project. Whole-body endogenous glucose output was measured by tracer ([H-3]glucose) dilution at steady-state, peripheral insulin sensitivity (a glucose clearance/partial derivative insulin) was measured by the euglycaemic insulin (7 pmol x min(-1) x kg(-1)) clamp technique. Results. Whole-body endogenous glucose output showed a large variability (mean = 768 +/- 202 mu mol.min(-1), range 209-1512) and was strongly related to lean body mass (r = 0.63,p < 0.0001). This association entirely explained the endogenous glucose output being higher in men than in women (827+/-189 vs 674 x 187 mu mol x min(-1), p < 0.0001), its relation to body mass (+ 10 +/- 2 per unit of body mass index, p < 0.0001) and its trend to decline with age (-1.1 +/- 0.7 mu mol.min(-1) per year, p = 0.10). Although inversely related to one another (r = -0.41, p < 0.0001), peripheral insulin sensitivity and fasting plasma insulin were both independently associated with endogenous glucose output in an inverse fashion (with partial r's of 0.19 and 0.21, respectively, after adjusting for lean body mass and centre, p < 0.0001 for both). Conclusion/interpretation. Among non-diabetic subjects in the postabsorptive condition, total body endogenous glucose output variability is wide and is largely explained by the amount of lean mass; this, in turn, explains differences in total endogenous glucose output due to sex, obesity and age. Independently of the amount of lean mass, peripheral insulin resistance is associated with a higher endogenous glucose output independently of fasting plasma insulin concentration, suggesting coupled regulation of insulin action in peripheral tissues and the liver.
引用
收藏
页码:1266 / 1272
页数:7
相关论文
共 15 条
[1]   INSULIN-RESISTANCE OF STRESS - SITES AND MECHANISMS [J].
BRANDI, LS ;
SANTORO, D ;
NATALI, A ;
ALTOMONTE, F ;
BALDI, S ;
FRASCERRA, S ;
FERRANNINI, E .
CLINICAL SCIENCE, 1993, 85 (05) :525-535
[2]   Effect of obesity and insulin resistance on resting and glucose-induced thermogenesis in man [J].
Camastra, S ;
Bonora, E ;
Del Prato, S ;
Rett, K ;
Weck, M ;
Ferrannini, E .
INTERNATIONAL JOURNAL OF OBESITY, 1999, 23 (12) :1307-1313
[3]   The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects [J].
Chen, XH ;
Iqbal, N ;
Boden, G .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (03) :365-372
[4]  
DEFRONZO RA, 1979, AM J PHYSIOL, V237, P214
[5]  
FERRANNINI E, 1983, J CLIN INVEST, V72, P1737, DOI 10.1172/JCI111133
[6]   Insulin resistance and hypersecretion in obesity [J].
Ferrannini, E ;
Natali, A ;
Bell, P ;
CavalloPerin, P ;
Lalic, N ;
Mingrone, G .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (05) :1166-1173
[7]   PREDICTION OF LEAN BODY MASS FROM HEIGHT AND WEIGHT [J].
HUME, R .
JOURNAL OF CLINICAL PATHOLOGY, 1966, 19 (04) :389-&
[8]   RELATIONSHIP BETWEEN HEPATIC GLUCOSE-PRODUCTION AND FASTING PLASMA-GLUCOSE CONCENTRATION IN PATIENTS WITH NIDDM [J].
JENG, CY ;
SHEU, WHH ;
FUH, MMT ;
CHEN, YDI ;
REAVEN, GM .
DIABETES, 1994, 43 (12) :1440-1444
[9]   QUANTIFICATION OF THE RELATIONSHIP BETWEEN INSULIN SENSITIVITY AND BETA-CELL FUNCTION IN HUMAN-SUBJECTS - EVIDENCE FOR A HYPERBOLIC FUNCTION [J].
KAHN, SE ;
PRIGEON, RL ;
MCCULLOCH, DK ;
BOYKO, EJ ;
BERGMAN, RN ;
SCHWARTZ, MW ;
NEIFING, JL ;
WARD, WK ;
BEARD, JC ;
PALMER, JP ;
PORTE, D .
DIABETES, 1993, 42 (11) :1663-1672
[10]   Regulation of endogenous glucose production by glucose per se is impaired in Type 2 diabetes mellitus [J].
Mevorach, M ;
Giacca, A ;
Aharon, Y ;
Hawkins, M ;
Shamoon, H ;
Rossetti, L .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (04) :744-753