Rotating black holes in higher dimensions with a cosmological constant -: art. no. 171102

被引:266
作者
Gibbons, GW
Lü, H
Page, DN
Pope, CN
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 OWA, England
[2] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, College Stn, TX 77843 USA
[3] Univ Alberta, Inst Theoret Phys, Phys Lab 412, Edmonton, AB T6G 2J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevLett.93.171102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and the Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated SD-2 bundles over S-2, infinitely many for each odd Dgreater than or equal to5. Applications to string theory and M-theory are indicated.
引用
收藏
页码:171102 / 1
页数:4
相关论文
共 15 条
[1]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[2]  
CARTER B, 1972, LES HOUCHES LECT
[3]   COMPLEX NUMBERS, QUANTUM-MECHANICS AND THE BEGINNING OF TIME [J].
GIBBONS, GW ;
POHLE, HJ .
NUCLEAR PHYSICS B, 1993, 410 (01) :117-142
[4]  
GIBBONS GW, IN PRESS J GEOM PHYS
[5]  
GIBBONS GW, HEPTH0408217
[6]  
HASHIMOTO Y, HEPTH0407114
[7]  
Hashimoto Y., HEPTH0402199
[8]   Rotation and the AdS-CFT correspondence [J].
Hawking, SW ;
Hunter, CJ ;
Taylor-Robinson, MM .
PHYSICAL REVIEW D, 1999, 59 (06)
[9]  
Kerr R.P., 1965, Proc. Symp. Appl. Math., V17, P199, DOI DOI 10.1090/PSAPM/017/0216846