Lagrangians with linear velocities within Riemann-Liouville fractional derivatives

被引:164
作者
Baleanu, D [1 ]
Avkar, T [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS | 2004年 / 119卷 / 01期
关键词
D O I
10.1393/ncb/i2003-10062-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lagrangians linear in velocities were analyzed using the fractional calculus and the Euler-Lagrange equations were derived. Two examples were investigated in details; the explicit solutions of Euler-Lagrange equations were obtained and the recovery of the classical results was discussed.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 26 条
[1]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]  
ANH VV, 2001, FINANC STOCH, V5, P83
[4]  
Baleanu D, 2000, NUOVO CIMENTO B, V115, P319
[5]  
BLUTZER RL, 1996, J RHEOL, V30, P133
[6]  
Engheta N, 1999, MICROW OPT TECHN LET, V22, P236, DOI 10.1002/(SICI)1098-2760(19990820)22:4<236::AID-MOP6>3.0.CO
[7]  
2-8
[8]  
Hanson A, 1976, CONSTRAINED HAMILTON
[9]  
Henneaux M., 1992, Quantization of Gauge Systems, DOI 10.1515/9780691213866
[10]   Experimental evidence for fractional time evolution in glass forming materials [J].
Hilfer, R .
CHEMICAL PHYSICS, 2002, 284 (1-2) :399-408