The dynamic kinetochore-microtubule interface

被引:304
作者
Maiato, H
DeLuca, J
Salmon, ED
Earnshaw, WC
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[2] New York State Dept Hlth, Lab Cell Regulat, Div Mol Med, Wadsworth Ctr, Albany, NY 12201 USA
[3] Univ Edinburgh, Inst Cell & Mol Biol, Wellcome Trust Ctr Cell Biol, Chromosome Struct Grp, Edinburgh EH9 3JR, Midlothian, Scotland
基金
英国惠康基金;
关键词
kinetochore; microtubule; CENP proteins; Ndc80; dynein; centromere; chromosomal passengers; Aurora B; Ran;
D O I
10.1242/jcs.01536
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The kinetochore is a control module that both powers and regulates chromosome segregation in mitosis and meiosis. The kinetochore-microtubule interface is remarkably fluid, with the microtubules growing and shrinking at their point of attachment to the kinetochore. Furthermore, the kinetochore itself is highly dynamic, its makeup changing as cells enter mitosis and as it encounters microtubules. Active kinetochores have yet to be isolated or reconstituted, and so the structure remains enigmatic. Nonetheless, recent advances in genetic, bioinformatic and imaging technology mean we are now beginning to understand how kinetochores assemble, bind to microtubules and release them when the connections made are inappropriate, and also how they influence microtubule behaviour. Recent work has begun to elucidate a pathway of kinetochore assembly in animal cells; the work has revealed that many kinetochore components are highly dynamic and that some cycle between kinetochores and spindle poles along microtubules. Further studies of the kinetochore-microtubule interface are illuminating: (1) the role of the Ndc80 complex and components of the Ran-GTPase system in microtubule attachment, force generation and microtubule-dependent inactivation of kinetochore spindle checkpoint activity; (2) the role of chromosomal passenger proteins in the correction of kinetochore attachment errors; and (3) the function of microtubule plus-end tracking proteins, motor depolymerases and other proteins in kinetochore movement on microtubules and movement coupled to microtubule poleward flux.
引用
收藏
页码:5461 / 5477
页数:17
相关论文
共 228 条
[1]   Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation [J].
Adams, RR ;
Maiato, H ;
Earnshaw, WC ;
Carmena, M .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :865-879
[2]   Chromosomal passengers and the (aurora) ABCs of mitosis [J].
Adams, RR ;
Carmena, M ;
Earnshaw, WC .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :49-54
[3]   CLASPs are CLIP-115 and-170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts [J].
Akhmanova, A ;
Hoogenraad, CC ;
Drabek, K ;
Stepanova, T ;
Dortland, B ;
Verkerk, T ;
Vermeulen, W ;
Burgering, BM ;
De Zeeuw, CI ;
Grosveld, F ;
Galjart, N .
CELL, 2001, 104 (06) :923-935
[4]   Building the centromere: from foundation proteins to 3D organization [J].
Amor, DJ ;
Kalitsis, P ;
Sumer, H ;
Choo, KHA .
TRENDS IN CELL BIOLOGY, 2004, 14 (07) :359-368
[5]   Aurora B regulates MCAK at the mitotic centromere [J].
Andrews, PD ;
Ovechkina, Y ;
Morrice, N ;
Wagenbach, M ;
Duncan, K ;
Wordeman, L ;
Swedlow, JR .
DEVELOPMENTAL CELL, 2004, 6 (02) :253-268
[6]   Structural transitions at microtubule ends correlate with their dynamic properties in Xenopus egg extracts [J].
Arnal, I ;
Karsenti, E ;
Hyman, AA .
JOURNAL OF CELL BIOLOGY, 2000, 149 (04) :767-774
[7]   The ran GTPase regulates kinetochore function [J].
Arnaoutov, A ;
Dasso, M .
DEVELOPMENTAL CELL, 2003, 5 (01) :99-111
[8]   Chromosome movement: Dynein-out at the kinetochore [J].
Banks, JD ;
Heald, R .
CURRENT BIOLOGY, 2001, 11 (04) :R128-R131
[9]   In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis [J].
Basto, R ;
Scaerou, F ;
Mische, S ;
Wojcik, E ;
Lefebvre, C ;
Gomes, R ;
Hays, T ;
Karess, R .
CURRENT BIOLOGY, 2004, 14 (01) :56-61
[10]   An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells [J].
Belgareh, N ;
Rabut, G ;
Baï, SW ;
van Overbeek, M ;
Beaudouin, J ;
Daigle, N ;
Zatsepina, OV ;
Pasteau, F ;
Labas, V ;
Fromont-Racine, M ;
Ellenberg, J ;
Doye, V .
JOURNAL OF CELL BIOLOGY, 2001, 154 (06) :1147-1160