Point inversion and projection for NURBS curve and surface: Control polygon approach

被引:99
作者
Ma, YL [1 ]
Hewitt, WT [1 ]
机构
[1] Univ Manchester, Manchester Visualizat Ctr, Manchester M13 9PL, Lancs, England
关键词
point projection; point inversion; NURBS curve; NURBS surface;
D O I
10.1016/S0167-8396(03)00021-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents an accurate and efficient method to solve both point projection and point inversion for NURBS curves and surfaces. We first subdivide the NURBS curve or surface into a set of Bezier subcurves or patches. Based on the relationship between the test point and the control polygon of Bezier curve or the control point net of the Bezier patch, we extract candidate Bezier subcurves or Bezier patches and then find the approximate candidate points. Finally, by comparing the distances between the test point and candidate points, we are able to find the closest point. We improve its accuracy by using the Newton-Raphson method. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:79 / 99
页数:21
相关论文
共 13 条
[1]   INSERTING NEW KNOTS INTO B-SPLINE CURVES [J].
BOEHM, W .
COMPUTER-AIDED DESIGN, 1980, 12 (04) :199-201
[2]  
CHIN F, 1983, IEEE T COMPUT, V32, P1203, DOI 10.1109/TC.1983.1676186
[3]  
COHEN E, 1980, COMPUT GRAPH IMAGE P, V14
[4]  
EDELSBRUNNER H, 1982, F96 TU GRAZ
[5]  
Johnson DE, 1998, IEEE INT CONF ROBOT, P3678, DOI 10.1109/ROBOT.1998.681403
[6]   GEOMETRIC ALGORITHMS FOR THE INTERSECTION OF CURVES AND SURFACES [J].
LIMAIEM, A ;
TROCHU, F .
COMPUTERS & GRAPHICS, 1995, 19 (03) :391-403
[7]  
LIN M, 1995, VISUAL COMPUT, P541
[8]   MAKING THE OSLO ALGORITHM MORE EFFICIENT [J].
LYCHE, T ;
MORKEN, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (03) :663-675
[9]  
Mortenson M. E., 1985, GEOMETRIC MODELING, P305
[10]   ON NURBS - A SURVEY [J].
PIEGL, L .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1991, 11 (01) :55-71