A Context-Sensitive Technique Robust to Registration Noise for Change Detection in VHR Multispectral Images

被引:72
作者
Marchesi, Silvia [1 ]
Bovolo, Francesca [1 ]
Bruzzone, Lorenzo [1 ]
机构
[1] Univ Trent, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
关键词
Change detection (CD); change vector analysis (CVA); multitemporal images; registration noise (RN); remote sensing; very high resolution (VHR) images; UNSUPERVISED CHANGE DETECTION; MISREGISTRATION; TRACKING; SYSTEM;
D O I
10.1109/TIP.2010.2045070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an automatic context-sensitive technique robust to registration noise (RN) for change detection (CD) in multitemporal very high geometrical resolution (VHR) remote sensing images. Exploiting the properties of RN in VHR images, the proposed technique analyzes the distribution of the spectral change vectors (SCVs) computed according to the change vector analysis (CVA) in a quantized polar domain. The method studies the SCVs falling into each quantization cell at different resolution levels (scales) to automatically identify the effects of RN in the polar domain. This information is jointly exploited with the spatial context information contained in the neighborhood of each pixel for generating the final CD map. The spatial context information is modeled through the definition of adaptive regions homogeneous both in spatial and temporal domain (parcels). Experimental results obtained on real VHR remote sensing multitemporal images confirm the effectiveness of the proposed technique.
引用
收藏
页码:1877 / 1889
页数:13
相关论文
共 32 条
[1]  
Baatz M., 2004, ECOGNITION USER GUID
[2]   Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution [J].
Bosc, M ;
Heitz, F ;
Armspach, JP ;
Namer, I ;
Gounot, D ;
Rumbach, L .
NEUROIMAGE, 2003, 20 (02) :643-656
[3]   A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain [J].
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01) :218-236
[4]   Analysis of the Effects of Pansharpening in Change Detection on VHR Images [J].
Bovolo, Francesca ;
Bruzzone, Lorenzo ;
Capobianco, Luca ;
Garzelli, Andrea ;
Marchesi, Silvia ;
Nencini, Filippo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) :53-57
[5]   Analysis and Adaptive Estimation of the Registration Noise Distribution in Multitemporal VHR Images [J].
Bovolo, Francesca ;
Bruzzone, Lorenzo ;
Marchesi, Silvia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08) :2658-2671
[6]   A Multilevel Parcel-Based Approach to Change Detection in Very High Resolution Multitemporal Images [J].
Bovolo, Francesca .
IEEE Geoscience and Remote Sensing Letters, 2009, 6 (01) :33-37
[7]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[8]   An adaptive approach to reducing registration noise effects in unsupervised change detection [J].
Bruzzone, L ;
Cossu, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (11) :2455-2465
[9]   Detection of changes in remotely-sensed images by the selective use of multi-spectral information [J].
Bruzzone, L ;
Serpico, SB .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (18) :3883-3888
[10]   An adaptive parcel-based technique for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (04) :817-822