The structure and development of a wing-tip vortex

被引:328
作者
Devenport, WJ
Rife, MC
Liapis, SI
Follin, GJ
机构
[1] Dept. of Aerosp. and Ocean Eng., Virginia Polytech. Inst. State Univ., Blacksburg
关键词
D O I
10.1017/S0022112096001929
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Experiments have been performed on the tip vortex trailing from a rectangular NACA 0012 half-wing. Preliminary studies showed the vortex to be insensitive to the introduction of a probe and subject only to small wandering motions. Meaningful velocity measurements could therefore be made using hot-wire probes. Detailed analysis of the effects of wandering was performed to properly reveal the flow structure in the core region and to give confidence in measurements made outside the core. A theory has been developed to correct mean-velocity profiles for the effects of wandering and to provide complete quantitative estimates of its amplitude and contributions to Reynolds stress fields. Spectral decomposition was found to be the most effective method of separating these contributions from velocity fluctuations due to turbulence. Outside the core the how structure is dominated by the remainder of the wing wake which winds into an ever-increasing spiral. There is no large region of axisymmetric turbulence surrounding the core and little sign of turbulence generated by the rotational motion of the vortex. Turbulence stress levels vary along the wake spiral in response to the varying rates of strain imposed by the vortex. Despite this complexity, the shape of the wake spiral and its turbulent structure reach an approximately self-similar form. On moving from the spiral wake to the core the overall level of velocity fluctuations greatly increases, but none of this increase is directly produced by turbulence. Velocity spectra measured at the vortex centre scale in a manner that implies that the core is laminar and that velocity fluctuations here are a consequence of inactive motion produced as the core is buffeted by turbulence in the surrounding spiral wake. Mean-velocity profiles through the core show evidence of a two-layered structure that dies away with distance downstream.
引用
收藏
页码:67 / 106
页数:40
相关论文
共 71 条
  • [1] ACCARDO L, 1984, 2 INT S APPL LAS AN
  • [2] ANTONIA RA, 1989, EXP FLUIDS, V7, P138
  • [3] LASER ANEMOMETER MEASUREMENTS OF TRAILING VORTICES IN WATER
    BAKER, GR
    BARKER, SJ
    BOFAH, KK
    SAFFMAN, PG
    [J]. JOURNAL OF FLUID MECHANICS, 1974, 65 (AUG28) : 325 - 336
  • [4] DECAY OF FAR-FLOWFIELD IN TRAILING VORTICES
    BALDWIN, BS
    CHIGIER, NA
    SHEAFFER, YS
    [J]. AIAA JOURNAL, 1973, 11 (12) : 1601 - 1602
  • [5] ORGANIZED NATURE OF A TURBULENT TRAILING VORTEX
    BANDYOPADHYAY, PR
    STEAD, DJ
    ASH, RL
    [J]. AIAA JOURNAL, 1991, 29 (10) : 1627 - 1633
  • [6] AXIAL FLOW IN TRAILING LINE VORTICES
    BATCHELOR, GK
    [J]. JOURNAL OF FLUID MECHANICS, 1964, 20 (04) : 645 - 658
  • [7] BECHNER W, 1975, ANN MATH, V102, P159
  • [8] BETZ A, 1933, 713 NACA, P237
  • [9] VORTEX INTERACTIONS AND DECAY IN AIRCRAFT WAKES
    BILANIN, AJ
    TESKE, ME
    WILLIAMSON, GG
    [J]. AIAA JOURNAL, 1977, 15 (02) : 250 - 260
  • [10] BISGOOD PL, 1971, AIRCRAFT WAKE TURBUL, P171