Advanced Materials for Energy Storage

被引:4361
作者
Liu, Chang [1 ]
Li, Feng [1 ]
Ma, Lai-Peng [1 ]
Cheng, Hui-Ming [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
关键词
LITHIUM-ION BATTERY; ENHANCED HYDROGEN STORAGE; DOUBLE-LAYER CAPACITORS; CARBIDE-DERIVED CARBONS; METAL-ORGANIC FRAMEWORKS; HIGH-RATE PERFORMANCE; CORE-SHELL NANOWIRES; SNO2 HOLLOW SPHERES; N-H SYSTEM; ANODE MATERIAL;
D O I
10.1002/adma.200903328
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
引用
收藏
页码:E28 / +
页数:36
相关论文
共 323 条
  • [1] First-principles determination of multicomponent hydride phase diagrams: application to the Li-Mg-N-H system
    Akbarzadeh, Alireza R.
    Ozolins, Vidvuds
    Wolverton, Christopher
    [J]. ADVANCED MATERIALS, 2007, 19 (20) : 3233 - +
  • [2] CoO2, the end member of the LixCoO2 solid solution
    Amatucci, GG
    Tarascon, JM
    Klein, LC
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) : 1114 - 1123
  • [3] An asymmetric hybrid nonaqueous energy storage cell
    Amatucci, GG
    Badway, F
    Du Pasquier, A
    Zheng, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) : A930 - A939
  • [4] A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst
    Amendola, SC
    Sharp-Goldman, SL
    Janjua, MS
    Spencer, NC
    Kelly, MT
    Petillo, PJ
    Binder, M
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) : 969 - 975
  • [5] An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
  • [6] 2-G
  • [7] The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template
    Ania, Conchi O.
    Khomenko, Volodymyr
    Raymundo-Pinero, Encarnacion
    Parra, Jose B.
    Beguin, Francois
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (11) : 1828 - 1836
  • [8] [Anonymous], 1999, ELECTROCHEMICAL SUPE
  • [9] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [10] Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/nmat2372, 10.1038/NMAT2372]