An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor

被引:28
作者
Tian, Yuqing
Fowler, Kay
Findlay, Kim
Tan, Huarong [1 ]
Chater, Keith F.
机构
[1] Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, Beijing 100080, Peoples R China
[2] John Innes Inst, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1128/JB.01615-06
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
WhiI, a regulator required for efficient sporulation septation in the aerial mycelium of Streptomyces coelicolor, resembles response regulators of bacterial two-component systems but lacks some conserved features of typical phosphorylation pockets. Four amino acids of the abnormal "phosphorylation pocket" were changed by site-directed mutagenesis. Unlike whiI null mutations, these point mutations did not interfere with sporulation septation but had various effects on spore maturation. Transcriptome analysis was used to compare gene expression in the wild-type strain, a D27A mutant (pale gray spores), a D69E mutant (wild-type spores), and a null mutant (white aerial mycelium, no spores) (a new variant of PCR targeting was used to introduce the point mutations into the chromosomal copy of whiI). The results revealed 45 genes that were affected by the deletion of whil. Many of these showed increased expression in the wild type at the time when aerial growth and development were taking place. About half of them showed reduced expression in the null mutant, and about half showed increased expression. Some, but not all, of these 45 genes were also affected by the D27A mutation, and a few were affected by the D69E mutation. The results were consistent with a model in which Whil acts differently at sequential stages of development. Consideration of the functions of whiI-influenced genes provides some insights into the physiology of aerial hyphae. Mutation of seven whiI-influenced genes revealed that three of them play roles in spore maturation.
引用
收藏
页码:2873 / 2885
页数:13
相关论文
共 39 条
[1]   A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2) [J].
Aínsa, JA ;
Parry, HD ;
Chater, KF .
MOLECULAR MICROBIOLOGY, 1999, 34 (03) :607-619
[2]  
[Anonymous], 2000, Practical Streptomyces genetics, DOI DOI 10.1111/J.1365-2427.2007.01876.X
[3]  
[Anonymous], TORTURE Q J REHABIL
[4]   Structure of the Escherichia coli response regulator NarL [J].
Baikalov, I ;
Schroder, I ;
KaczorGrzeskowiak, M ;
Grzeskowiak, K ;
Gunsalus, RP ;
Dickerson, RE .
BIOCHEMISTRY, 1996, 35 (34) :11053-11061
[5]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[6]   Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis [J].
Bucca, G ;
Brassington, AME ;
Hotchkiss, G ;
Mersinias, V ;
Smith, CP .
MOLECULAR MICROBIOLOGY, 2003, 50 (01) :153-166
[7]   Regulation of sporulation in Streptomyces coelicolor A3(2):: a checkpoint multiplex? [J].
Chater, KF .
CURRENT OPINION IN MICROBIOLOGY, 2001, 4 (06) :667-673
[8]   GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT [J].
CHEREPANOV, PP ;
WACKERNAGEL, W .
GENE, 1995, 158 (01) :9-14
[9]   The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins [J].
Claessen, D ;
Stokroos, I ;
Deelstra, HJ ;
Penninga, NA ;
Bormann, C ;
Salas, JA ;
Dijkhuizen, L ;
Wösten, HAB .
MOLECULAR MICROBIOLOGY, 2004, 53 (02) :433-443
[10]   Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface [J].
Claessen, D ;
Wösten, HAB ;
van Keulen, G ;
Faber, OG ;
Alves, AMCR ;
Meijer, WG ;
Dijkhuizen, L .
MOLECULAR MICROBIOLOGY, 2002, 44 (06) :1483-1492