OH(A 2Σ+) and rare gas-deuteride (NeD, ArD) excimers generated in microcavity plasmas:: Ultraviolet emission spectra and formation kinetics

被引:4
作者
Ricconi, B. J. [1 ]
Park, S.-J. [1 ]
Sung, S. H. [1 ]
Tchertchian, P. A. [1 ]
Eden, J. G. [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Lab Opt Phys & Engn, Urbana, IL 61801 USA
关键词
D O I
10.1063/1.2731658
中图分类号
O59 [应用物理学];
学科分类号
摘要
Emission in the ultraviolet from the A (2)Sigma(+) electronic excited states of OH, NeD, and ArD, and the formation kinetics of these excited heteronuclear diatomics, have been investigated in microcavity plasmas generated in rare gas/H2O or D-2 gas mixtures. Excitation transfer from the a (3)Sigma(+)(u)(1(u),0(u)(-)) Rydberg state of Ar-2 appears to be the dominant pathway to OH(A (2)Sigma(+)) formation in Ar/H2O vapor mixtures with total pressures of 400-800 Torr and H2O partial pressures of 100 mTorr-3 Torr. Maximum emission on the (v('),v('))=(0,0) vibrational band of the OH(A -> X) transition is observed in a 25 mu m, 45 nl microcavity for 600-800 Torr Ar/0.5 Torr H2O mixtures. Comparisons of experimental and simulated fluorescence spectra show the OH[A (2)Sigma(+)(v(')=0)] state rotational temperature to be 425 K for 600 Torr Ar/100 mTorr H2O mixtures but to rise linearly with the H2O partial pressure and exhibit a slope of 170 K/Torr H2O for 100 mTorr <= p(H2)O <= 3 Torr. Excitation of Ne or Ar/D-2 gas mixtures in 50x50 arrays of Si microplasma devices generates broadband spectra, peaking in the mid-ultraviolet (lambda similar to 280-320 nm), which are attributed to the A -> X transition of the ArD or NeD excimers. The optimal D-2 concentration is observed to be similar to 0.5% and the primary kinetic formation mechanism for the deuterides involves D atom transfer in collisions between Ar(4s P-3) and D-2. (C) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 15 条
[1]   Microplasmas and applications [J].
Becker, KH ;
Schoenbach, KH ;
Eden, JG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (03) :R55-R70
[2]   POTENTIAL HYDROXYL ULTRAVIOLET-LASER [J].
CHEN, CH ;
PAYNE, MG .
OPTICS COMMUNICATIONS, 1976, 18 (04) :476-478
[3]   One quarter million (500x500) pixel arrays of silicon microcavity plasma devices: Luminous efficacy above 6 lumens/watt with Ne/50% Xe mixtures and a green phosphor [J].
Chen, KF ;
Ostrom, NP ;
Park, SJ ;
Eden, JG .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[4]   THE ULTRAVIOLET BANDS OF OH - FUNDAMENTAL DATA [J].
DIEKE, GH ;
CROSSWHITE, HM .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1962, 2 (02) :97-&
[5]   From N2 (337 nm) to high-order harmonic generation:: 40 years of coherent source development in the UV and VUV [J].
Eden, JG .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :1051-1060
[6]   VACUUM ULTRAVIOLET-LASER SPECTROSCOPY .5. ROVIBRONIC SPECTRA OF AR-2 AND CONSTANTS OF THE GROUND AND EXCITED-STATES [J].
HERMAN, PR ;
LAROCQUE, PE ;
STOICHEFF, BP .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (08) :4535-4549
[7]  
HERZBERG G, 1987, ANNU REV PHYS CHEM, V38, P27, DOI 10.1146/annurev.pc.38.100187.000331
[8]   SPECTRUM OF NEUTRAL ARGON HYDRIDE [J].
JOHNS, JWC .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1970, 36 (03) :488-&
[9]   EXCITATION OF CONTINUUM RADIATION IN COLLISIONS OF (1) ELECTRONS AND (2) METASTABLE ARGON ATOMS WITH H-2 AND D2 [J].
LISHAWA, CR ;
FELDSTEIN, JW ;
STEWART, TN ;
MUSCHILITZ, EE .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (01) :133-139
[10]   Transition probabilities in the A 2Σ+-X 2Πi electronic system of OH [J].
Luque, J ;
Crosley, DR .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (02) :439-448