Lactate transport and transporters: General principles and functional roles in brain cells

被引:122
作者
Hertz, L
Dienel, GA
机构
[1] China Med Univ, Coll Basic Med Sci, Shenyang, Peoples R China
[2] Univ Arkansas Med Sci, Dept Neurol, Little Rock, AR 72205 USA
关键词
lactate transport; monocarboxylate transporters; metabolism-driven uptake; facilitated diffusion; neurons; astrocytes;
D O I
10.1002/jnr.20294
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Lactate is transported across cell membranes by diffusional, saturable cotransport with protons, mediated by monocarboxylate transporters (MCTs). This transport is bidirectional and in the absence of a transcellular H+ gradient, it can increase the intracellular concentration of lactate up to but not beyond the extracellular level (or vice versa). If extra- and intracellular pH differ, however, the equilibrium level is determined by the gradients of both lactate anions and protons. Rates of lactate uptake are determined most often by measuring uptake of labeled lactate, e.g., [U-C-14] lactate. In the case of lactate and other compounds that are metabolized, errors are introduced easily because continuing inwardly directed diffusional net transport of label can be achieved by intracellular metabolism, reducing the intracellular level of the nonmetabolized lactate and thus maintaining a concentration gradient between extra- and intracellular concentrations of the nonmetabolized compound (metabolism-driven uptake). For measurement of facilitated diffusion kinetics, it is essential that the period during which the uptake is measured is short enough that little or no metabolism-driven uptake contributes to the measured uptake (or that first-order regression analysis is carried out to obtain initial uptake rates from nonlinear traces). To achieve initial uptake rates, incubation periods well below 1 min are generally required. Lactate uptake is fast in astrocytes, which express powerful, low-affinity MCTs, i.e., MCT1 and MCT4. Due to the low affinity of these transporters, they respond to increased lactate gradients with enhanced transporter activity. The predominant MCT in neurons is the high-affinity MCT2, which can only increase its activity to a limited extent in the face of an increased lactate gradient. This is reflected by a high-affinity lactate uptake, although most investigators also have demonstrated a component of lactate uptake with lower affinity. In both neurons and astrocytes, however, facilitated diffusion is fast enough that under most conditions lactate fluxes will be determined mainly by the rate of metabolism-driven uptake, and MCT-mediated transport only will be rate-limiting after establishment of large transmembrane gradients. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 46 条
[1]   Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes [J].
Becker, HM ;
Bröer, S ;
Deitmer, JW .
BIOPHYSICAL JOURNAL, 2004, 86 (01) :235-247
[2]   Fabric studies on contaminated mineral layers in composite liners [J].
Berger, W ;
Kalbe, U ;
Goebbels, J .
APPLIED CLAY SCIENCE, 2002, 21 (1-2) :89-98
[3]   A novel postsynaptic density protein:: the monocarboxylate transporter MCT2 is co-localized with δ-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses [J].
Bergersen, L ;
Wærhaug, O ;
Helm, J ;
Thomas, M ;
Laake, P ;
Davies, AJ ;
Wilson, MC ;
Halestrap, AP ;
Ottersen, OP .
EXPERIMENTAL BRAIN RESEARCH, 2001, 136 (04) :523-534
[4]   The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment [J].
Bouzier, AK ;
Thiaudiere, E ;
Biran, M ;
Rouland, R ;
Canioni, P ;
Merle, M .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (02) :480-486
[5]   Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes - Expression of two different monocarboxylate transporters in astroglial cells and neurons [J].
Broer, S ;
Rahman, B ;
Pellegri, G ;
Pellerin, L ;
Martin, JL ;
Verleysdonk, S ;
Hamprecht, B ;
Magistretti, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30096-30102
[6]   Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes [J].
Bröer, S ;
Bröer, A ;
Schneider, HP ;
Stegen, C ;
Halestrap, AP ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1999, 341 :529-535
[7]   Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH [J].
Bröer, S ;
Schneider, HP ;
Bröer, A ;
Rahman, B ;
Hamprecht, B ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1998, 333 :167-174
[8]   THE KINETICS, SUBSTRATE AND INHIBITOR SPECIFICITY OF THE LACTATE TRANSPORTER OF EHRLICH-LETTRE TUMOR-CELLS STUDIED WITH THE INTRACELLULAR PH INDICATOR BCECF [J].
CARPENTER, L ;
HALESTRAP, AP .
BIOCHEMICAL JOURNAL, 1994, 304 :751-760
[9]   EFFECT OF VASOPRESSIN ON BRAIN-SWELLING AT THE CELLULAR-LEVEL - DO ASTROCYTES EXHIBIT A FUROSEMIDE VASOPRESSIN-SENSITIVE MECHANISM FOR VOLUME REGULATION [J].
CHEN, Y ;
MCNEILL, JR ;
HAJEK, I ;
HERTZ, L .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1992, 70 :S367-S373
[10]   Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis [J].
Chih, CP ;
Roberts, EL .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2003, 23 (11) :1263-1281