Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities

被引:103
作者
Hanaoka, S
Nagadoi, A
Nishimura, Y
机构
[1] Yokohama City Univ, Grad Sch Integrated Sci, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[2] Kihara Mem Yokohama Fdn Advancement Life Sci, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
关键词
telomeres; tertiary structures; TRF2; TRF1; protein/DNA interactions; NMR; Myb domain;
D O I
10.1110/ps.04983705
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding, proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1. only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices. and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1. in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains. we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 50 条
[1]   TRF1 binds a bipartite telomeric site with extreme spatial flexibility [J].
Bianchi, A ;
Stansel, RM ;
Fairall, L ;
Griffith, JD ;
Rhodes, D ;
de Lange, T .
EMBO JOURNAL, 1999, 18 (20) :5735-5744
[2]   TRF1 is a dimer and bends telomeric DNA [J].
Bianchi, A ;
Smith, S ;
Chong, L ;
Elias, P ;
deLange, T .
EMBO JOURNAL, 1997, 16 (07) :1785-1794
[3]  
BIAUD T, 1996, NUCLEIC ACIDS RES, V24, P1294
[4]   VIRAL MYB ONCOGENE ENCODES A SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY [J].
BIEDENKAPP, H ;
BORGMEYER, U ;
SIPPEL, AE ;
KLEMPNAUER, KH .
NATURE, 1988, 335 (6193) :835-837
[5]   Telomeric localization of TRF2, a novel human telobox protein [J].
Bilaud, T ;
Brun, C ;
Ancelin, K ;
Koering, CE ;
Laroche, T ;
Gilson, E .
NATURE GENETICS, 1997, 17 (02) :236-239
[6]  
BRENNAN RG, 1989, J BIOL CHEM, V264, P1903
[7]   Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2 [J].
Broccoli, D ;
Smogorzewska, A ;
Chong, L ;
deLange, T .
NATURE GENETICS, 1997, 17 (02) :231-235
[8]   A HUMAN TELOMERIC PROTEIN [J].
CHONG, L ;
VANSTEENSEL, B ;
BROCCOLI, D ;
ERDJUMENTBROMAGE, H ;
HANISH, J ;
TEMPST, P ;
DELANGE, T .
SCIENCE, 1995, 270 (5242) :1663-1667
[9]   Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres [J].
Cook, BD ;
Dynek, JN ;
Chang, W ;
Shostak, G ;
Smith, S .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (01) :332-342
[10]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293