A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway

被引:106
作者
Fingerman, Ian M.
Li, Hui-Chun
Briggs, Scott D. [1 ]
机构
[1] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Purdue Canc Ctr, W Lafayette, IN 47907 USA
关键词
Dot1; methylation; histone; telomere; silencing; chromatin;
D O I
10.1101/gad.1560607
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Saccharomyces cerevisiae cells lacking Dot1 exhibit a complete loss of H3K79 methylation and defects in heterochromatin-mediated silencing. To further understand the mechanism of Dot1-mediated methylation, the substrate requirement of Dot1 was determined. This analysis found that Dot1 requires histone H4 for in vitro methyltransferase activity and the histone H4 tail for Dot1-mediated methylation in yeast. Mutational analyses demonstrated that the basic patch residues (R17H18R19) of the histone H4 N-terminal tail are required for Dot1 methyltransferase activity in vitro as well as Dot1-mediated histone H3K79 methylation in vivo. In vitro binding assays show that Dot1 can interact with the H4 N-terminal tail via the basic patch residues. Furthermore, an acidic patch at the C terminus of Dot1 is required for histone H4 tail binding in vitro, histone H3K79 di- and trimethylation in vivo, and proper telomere silencing. Our data suggest a novel trans-histone regulatory pathway whereby charged residues of one histone are required for the modification of another histone. These findings not only provide key insights into the mechanism of Dot1 histone methylation but also illustrate how chromatin-modifying enzymes engage their nucleosomal substrates in vivo.
引用
收藏
页码:2018 / 2029
页数:12
相关论文
共 44 条
[1]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498
[2]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[3]   Structural and sequence motifs of protein (histone) methylation enzymes [J].
Cheng, XD ;
Collins, RE ;
Zhang, X .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2005, 34 :267-294
[4]   Critical role for the histone H4N terminus in nucleosome remodeling by ISWI [J].
Clapier, CR ;
Längst, G ;
Corona, DFV ;
Becker, PB ;
Nightingale, KP .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :875-883
[5]   A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI [J].
Clapier, CR ;
Nightingale, KP ;
Becker, PB .
NUCLEIC ACIDS RESEARCH, 2002, 30 (03) :649-655
[6]   Chromatin silencing protein and pachytene checkpoint regulator Dot1p has a methyltransferase fold [J].
Dlakic, M .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (07) :405-407
[7]   Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6 [J].
Dover, J ;
Schneider, J ;
Tawiah-Boateng, MA ;
Wood, A ;
Dean, K ;
Johnston, M ;
Shilatifard, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (32) :28368-28371
[8]   Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4 [J].
Edmondson, DG ;
Smith, MM ;
Roth, SY .
GENES & DEVELOPMENT, 1996, 10 (10) :1247-1259
[9]   Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase [J].
Fang, J ;
Feng, Q ;
Ketel, CS ;
Wang, HB ;
Cao, R ;
Xia, L ;
Erdjument-Bromage, H ;
Tempst, P ;
Simon, JA ;
Zhang, Y .
CURRENT BIOLOGY, 2002, 12 (13) :1086-1099
[10]   Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo [J].
Fazzio, TG ;
Gelbart, ME ;
Tsukiyama, T .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (21) :9165-9174