Quantum nonlocality test for continuous-variable states with dichotomic observables

被引:140
作者
Jeong, H [1 ]
Son, W
Kim, MS
Ahn, D
Brukner, C
机构
[1] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[2] Univ Seoul, Inst Quantum Informat Proc & Syst, Seoul 130743, South Korea
[3] Univ Vienna, Inst Phys Expt, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevA.67.012106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite-dimensional state using a dichotomic observable.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
Banaszek K, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.043803
[2]   Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation [J].
Banaszek, K ;
Wódkiewicz, K .
PHYSICAL REVIEW A, 1998, 58 (06) :4345-4347
[3]   Testing quantum nonlocality in phase space [J].
Banaszek, K ;
Wódkiewicz, K .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2009-2013
[4]   SQUEEZING IN CORRELATED QUANTUM-SYSTEMS [J].
BARNETT, SM ;
KNIGHT, PL .
JOURNAL OF MODERN OPTICS, 1987, 34 (6-7) :841-853
[5]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[6]   MAXIMAL VIOLATION OF BELL INEQUALITIES FOR MIXED STATES [J].
BRAUNSTEIN, SL ;
MANN, A ;
REVZEN, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (22) :3259-3261
[7]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[8]   Violating Bell's inequality beyond Cirel'son's bound [J].
Cabello, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (06)
[9]  
CAHILL KE, 1969, PHYS REV, V177, P1875
[10]   Maximal violation of Bell's inequalities for continuous variable systems [J].
Chen, ZB ;
Pan, JW ;
Hou, G ;
Zhang, YD .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4-404064