Unsupervised Change Detection for Satellite Images Using Dual-Tree Complex Wavelet Transform

被引:111
作者
Celik, Turgay [1 ]
Ma, Kai-Kuang [2 ]
机构
[1] Nanyang Technol Univ, Temasek Labs, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 03期
关键词
Bayesian inference; change detection; difference image; dual-tree complex wavelet transform (DT-DWT); environmental monitoring; expectation maximization (EM); Gaussian mixture modeling; multispectral images; multitemporal images; remote sensing; satellite images; surveillance; unsupervised thresholding; SAR DATA; LAND; CLASSIFICATION; MISREGISTRATION; MODEL;
D O I
10.1109/TGRS.2009.2029095
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, an unsupervised change-detection method for multitemporal satellite images is proposed. The algorithm exploits the inherent multiscale structure of the dual-tree complex wavelet transform (DT-CWT) to individually decompose each input image into one low-pass subband and six directional high-pass subbands at each scale. To avoid illumination variation issue possibly incurred in the low-pass subband, only the DT-CWT coefficient difference resulted from the six high-pass subbands of the two satellite images under comparison is analyzed in order to decide whether each subband pixel intensity has incurred a change. Such a binary decision is based on an unsupervised thresholding derived from a mixture statistical model, with a goal of minimizing the total error probability of change detection. The binary change-detection mask is thus formed for each subband, and all the produced subband masks are merged by using both the intrascale fusion and the interscale fusion to yield the final change-detection mask. For conducting the performance evaluation of change detection, the proposed DT-CWT-based unsupervised change-detection method is exploited for both the noise-free and the noisy images. Extensive simulation results clearly show that the proposed algorithm not only consistently provides more accurate detection of small changes but also demonstrates attractive robustness against noise interference under various noise types and noise levels.
引用
收藏
页码:1199 / 1210
页数:12
相关论文
共 38 条
  • [1] An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
    Bazi, Y
    Bruzzone, L
    Melgani, F
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04): : 874 - 887
  • [2] A novel method for mapping land cover changes: Incorporating time and space with geostatistics
    Boucher, Alexandre
    Seto, Karen C.
    Journel, Andre G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11): : 3427 - 3435
  • [3] A detail-preserving scale-driven approach to change detection in multitemporal SAR images
    Bovolo, F
    Bruzzone, L
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (12): : 2963 - 2972
  • [4] A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marconcini, Mattia
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07): : 2070 - 2082
  • [5] A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (06): : 1658 - 1670
  • [6] A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01): : 218 - 236
  • [7] A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis
    Brown, L
    Chen, JM
    Leblanc, SG
    Cihlar, J
    [J]. REMOTE SENSING OF ENVIRONMENT, 2000, 71 (01) : 16 - 25
  • [8] Automatic analysis of the difference image for unsupervised change detection
    Bruzzone, L
    Prieto, DF
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03): : 1171 - 1182
  • [9] An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images
    Bruzzone, L
    Serpico, SB
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (04): : 858 - 867
  • [10] A multilevel context-based system for classification of very high spatial resolution images
    Bruzzone, Lorenzo
    Carlin, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (09): : 2587 - 2600