An algorithm for the medial axis transform of 3D polyhedral solids

被引:88
作者
Sherbrooke, EC
Patrikalakis, NM
Brisson, E
机构
[1] MIT, DEPT OCEAN ENGN, CAMBRIDGE, MA 02139 USA
[2] BOSTON UNIV, OFF INFORMAT TECHNOL, BOSTON, MA 02215 USA
基金
美国国家科学基金会;
关键词
CAD; CAGD; CAM; geometric modeling; solid modeling; skeleton; symmetry; Voronoi diagram; polyhedra;
D O I
10.1109/2945.489386
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The medial axis transform (MAT) is a representation of an object which has been shown to be useful in design, interrogation, animation, finite element mesh generation, performance analysis, manufacturing simulation, path planning, and tolerance specification. In this paper, an algorithm for determining the MAT is developed for general 3D polyhedral solids of arbitrary genus without cavities, with nonconvex vertices and edges. The algorithm is based on a classification scheme which relates different pieces of the medial axis (MA) to one another even in the presence of degenerate MA points. Vertices of the MA are connected to one another by tracing along adjacent edges, and finally the faces of the axis are found by traversing closed loops of vertices and edges. Representation of the MA and associated radius function is addressed, and pseudocode for the algorithm is given along with recommended optimizations. A connectivity theorem is proven to show the completeness of the algorithm. Complexity estimates and stability analysis for the algorithms are presented. Finally, examples illustrate the computational properties of the algorithm for convex and nonconvex 3D polyhedral solids with polyhedral holes.
引用
收藏
页码:44 / 61
页数:18
相关论文
共 52 条
[1]  
[Anonymous], 1970, Complex Variables
[2]  
ARMSTRONG CG, 1991, ASME DESIGN AUTOMATI, V2, P139
[3]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[4]   BIOLOGICAL SHAPE AND VISUAL SCIENCE .1. [J].
BLUM, H .
JOURNAL OF THEORETICAL BIOLOGY, 1973, 38 (02) :205-287
[5]   SHAPE DESCRIPTION USING WEIGHTED SYMMETRIC AXIS FEATURES [J].
BLUM, H ;
NAGEL, RN .
PATTERN RECOGNITION, 1978, 10 (03) :167-180
[6]  
Blum H., 1967, MODELS PERCEPTION SP, P362, DOI DOI 10.1142/S0218654308001154
[7]   LINE-SKELETON [J].
BOOKSTEIN, FL .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 11 (02) :123-137
[8]  
Brandt J. W., 1991, Journal of Visual Communication and Image Representation, V2, P151, DOI 10.1016/1047-3203(91)90005-Z
[9]  
BRANDT JW, 1992, P SOC PHOTO-OPT INS, V1830, P258, DOI 10.1117/12.131752
[10]   CONTINUOUS SKELETON COMPUTATION BY VORONOI DIAGRAM [J].
BRANDT, JW ;
ALGAZI, VR .
CVGIP-IMAGE UNDERSTANDING, 1992, 55 (03) :329-338