Size and Crystallinity in Protein-Templated Inorganic Nanoparticles

被引:33
作者
Jolley, Craig C. [1 ,2 ]
Uchida, Masaki [1 ,3 ]
Reichhardt, Courtney [1 ]
Harrington, Richard [4 ,5 ]
Kang, Sebyung [1 ]
Klem, Michael T. [1 ]
Parise, John B. [4 ,5 ]
Douglas, Trevor [1 ,2 ,3 ]
机构
[1] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[2] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA
[3] Montana State Univ, Ctr Bioinspired Nanomat, Bozeman, MT 59717 USA
[4] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
PAIR DISTRIBUTION FUNCTION; LISTERIA-INNOCUA DPS; MASS-SPECTROMETRY; BIOMIMETIC SYNTHESIS; PYROCOCCUS-FURIOSUS; FERRITIN; IRON; CAGES; NANOCOMPOSITE; FERRIHYDRITE;
D O I
10.1021/cm100657w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, gamma-Fe2O3, Mn3O4, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.
引用
收藏
页码:4612 / 4618
页数:7
相关论文
共 46 条
[1]   Crystallization in patterns: A bio-inspired approach [J].
Aizenberg, J .
ADVANCED MATERIALS, 2004, 16 (15) :1295-1302
[2]   Iron Translocation into and out of Listeria innocua Dps and Size Distribution of the Protein-enclosed Nanomineral Are Modulated by the Electrostatic Gradient at the 3-fold "Ferritin-like" Pores [J].
Bellapadrona, Giuliano ;
Stefanini, Simonetta ;
Zamparelli, Carlotta ;
Theil, Elizabeth C. ;
Chiancone, Emilia .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (28) :19101-19109
[3]   New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [J].
Belsky, A ;
Hellenbrandt, M ;
Karen, VL ;
Luksch, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :364-369
[4]   MINCRYST: a crystallographic database for minerals, local and network (WWW) versions [J].
Chichagov, AV ;
Varlamov, DA ;
Dilanyan, RA ;
Dokina, TN ;
Drozhzhina, NA ;
Samokhvalova, OL ;
Ushakovskaya, TV .
CRYSTALLOGRAPHY REPORTS, 2001, 46 (05) :876-879
[5]  
Cornell R.M, 2003, The Iron Oxides, DOI DOI 10.1002/3527602097
[6]   Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144Ala [J].
d'Estaintot, BL ;
Paolo, S ;
Granier, T ;
Gallois, B ;
Chevalier, JM ;
Précigoux, G ;
Levi, S ;
Arosio, P .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (02) :277-293
[7]   Viruses: Making friends with old foes [J].
Douglas, T ;
Young, M .
SCIENCE, 2006, 312 (5775) :873-875
[8]   Host-guest encapsulation of materials by assembled virus protein cages [J].
Douglas, T ;
Young, M .
NATURE, 1998, 393 (6681) :152-155
[9]   SYNTHESIS AND STRUCTURE OF AN IRON(III) SULFIDE-FERRITIN BIOINORGANIC NANOCOMPOSITE [J].
DOUGLAS, T ;
DICKSON, DPE ;
BETTERIDGE, S ;
CHARNOCK, J ;
GARNER, CD ;
MANN, S .
SCIENCE, 1995, 269 (5220) :54-57
[10]   Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin [J].
Douglas, T ;
Stark, VT .
INORGANIC CHEMISTRY, 2000, 39 (08) :1828-1830