Dynamic instability in a DNA-segregating prokaryotic actin homolog

被引:217
作者
Garner, EC [1 ]
Campbell, CS [1 ]
Mullins, RD [1 ]
机构
[1] Univ Calif San Francisco, San Francisco, CA 94107 USA
关键词
D O I
10.1126/science.1101313
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of,DNA.
引用
收藏
页码:1021 / 1025
页数:5
相关论文
共 27 条