Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes

被引:155
作者
Fongy, C. [1 ]
Gaillot, A. -C. [2 ]
Jouanneau, S. [1 ]
Guyomard, D. [2 ]
Lestriez, B. [2 ]
机构
[1] CEA, Lab Composants Energie, F-38054 Grenoble, France
[2] Univ Nantes, CNRS, Inst Mat Jean Rouxel, F-44322 Nantes 3, France
关键词
diffusion; electrochemical electrodes; electrolytes; iron compounds; lithium compounds; POSITIVE-ELECTRODE; ROOM-TEMPERATURE; RATE CAPABILITY; LITHIUM; CATHODES; PERFORMANCE; ADDITIVES; BINDERS; SIZE;
D O I
10.1149/1.3432559
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study, realized within the framework of the optimization of aqueous LiFePO4 composite electrodes, relies on Prosini's approach [J. Electrochem. Soc. 152, A1925 (2005)] that characterizes the LiFePO4/Li discharge behavior through simple equations. Two key parameters extracted from the LiFePO4 discharge curves are analyzed to determine the optimal electrode engineering and to interpret the origins of the electrode performance limitations. In particular, the calendaring step plays a critical role. Low packing results in electronic limitation, while the ionic contribution dominates for dense electrodes. The best compromise is achieved for an optimal porosity in the 30-35% volume range. A simple equation is proposed to predict the ionic limitations of rate performance from the electrode thickness and porosity, and the liquid electrolyte diffusion constant. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3432559] All rights reserved.
引用
收藏
页码:A885 / A891
页数:7
相关论文
共 44 条
[1]  
ARMAND M, Patent No. 2004033360
[2]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[3]   Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries [J].
Bhuvaneswari, M. S. ;
Bramnik, N. N. ;
Ensling, D. ;
Ehrenberg, H. ;
Jaegermann, W. .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :553-560
[4]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[5]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[6]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[7]   Selection of conductive additives in Li-ion battery cathodes - A numerical study [J].
Chen, Y.-H. ;
Wang, C.-W. ;
Liu, G. ;
Song, X.-Y. ;
Battaglia, V. S. ;
Sastry, A. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A978-A986
[8]  
CRANK J, 1975, MATH DIFFUSION, P61
[9]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[10]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671