Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

被引:1847
作者
Hu, Liangbing [1 ]
Kim, Han Sun [1 ]
Lee, Jung-Yong [2 ]
Peumans, Peter [2 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
metal nanowire; scalable coating; transparent electrode; flexible electronics; solar cells; REDUCED GRAPHENE OXIDE; LARGE-AREA; FILMS; CELLS;
D O I
10.1021/nn1005232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Omega/sq and similar to 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
引用
收藏
页码:2955 / 2963
页数:9
相关论文
共 42 条
  • [1] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
  • [2] Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates
    Azulai, Daniel
    Belenkova, Tatyana
    Gilon, Hagit
    Barkay, Zahava
    Markovich, Gil
    [J]. NANO LETTERS, 2009, 9 (12) : 4246 - 4249
  • [3] Evaluation of solution-processed reduced graphene oxide films as transparent conductors
    Becerril, Hdctor A.
    Mao, Jie
    Liu, Zunfeng
    Stoltenberg, Randall M.
    Bao, Zhenan
    Chen, Yongsheng
    [J]. ACS NANO, 2008, 2 (03) : 463 - 470
  • [4] Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes
    Cao, Q
    Zhu, ZT
    Lemaitre, MG
    Xia, MG
    Shim, M
    Rogers, JA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (11)
  • [5] Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films
    Dan, Budhadipta
    Irvin, Glen C.
    Pasquali, Matteo
    [J]. ACS NANO, 2009, 3 (04) : 835 - 843
  • [6] DE S, ACS NANO 0412, P3104
  • [7] Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios
    De, Sukanta
    Higgins, Thomas M.
    Lyons, Philip E.
    Doherty, Evelyn M.
    Nirmalraj, Peter N.
    Blau, Werner J.
    Boland, John J.
    Coleman, Jonathan N.
    [J]. ACS NANO, 2009, 3 (07) : 1767 - 1774
  • [8] Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    Eda, Goki
    Fanchini, Giovanni
    Chhowalla, Manish
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (05) : 270 - 274
  • [9] Transparent and conducting electrodes for organic electronics from reduced graphene oxide
    Eda, Goki
    Lin, Yun-Yue
    Miller, Steve
    Chen, Chun-Wei
    Su, Wei-Fang
    Chhowalla, Manish
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (23)
  • [10] Fully Solution-Processed Inverted Polymer Solar Cells with Laminated Nanowire Electrodes
    Gaynor, Whitney
    Lee, Jung-Yong
    Peumans, Peter
    [J]. ACS NANO, 2010, 4 (01) : 30 - 34