Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium

被引:55
作者
Carboneras, M. [1 ]
Hernandez, L. S. [1 ,2 ]
del Valle, J. A. [1 ]
Garcia-Alonso, M. C. [1 ]
Escudero, M. L. [1 ]
机构
[1] CSIC, CENIM, Madrid 28040, Spain
[2] Univ Autonoma San Luis Potosi, Inst Met, San Luis Potosi 78210, Mexico
关键词
Coating materials; Metals and alloys; Surfaces and interfaces; Powder metallurgy; Corrosion; Electrochemical impedance spectroscopy; IN-VIVO CORROSION; IMPEDANCE SPECTROSCOPY; ANTICORROSIVE PIGMENTS; CONVERSION COATINGS; CURING TIME; ALLOY; PRETREATMENTS; MG; PERFORMANCE; SCAFFOLDS;
D O I
10.1016/j.jallcom.2010.02.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pure magnesium was processed by a powder metallurgy (PM) route to generate microstructural features that provide higher mechanical properties than those of cast pure magnesium and commercial AZ31 alloy. Nevertheless, corrosion resistance of PM Mg needs to be improved if this material is to be used for structural applications in a corrosive medium. In the present work, the corrosion protection effectiveness of three simple, economical and environmentally friendly coatings has been evaluated over immersion time in a chloride-containing solution. A silane coating, an anticorrosive paint formulated with ion-exchangeable pigments (IEPs) and a chemical conversion treatment to form a MgF2 layer have been studied. Silane film and anticorrosive paint enhance the corrosion behaviour of PM Mg during the first hours of immersion, but their protection effectiveness completely disappears after 2 days. For longer immersion times, the fluoride conversion coating may be considered the only viable and effective barrier to protect PM magnesium from degradation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:442 / 448
页数:7
相关论文
共 51 条
[1]   Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J].
Alvarez-Lopez, M. ;
Dolores Pereda, Maria ;
del Valle, J. A. ;
Fernandez-Lorenzo, M. ;
Garcia-Alonso, M. C. ;
Ruano, O. A. ;
Escudero, M. L. .
ACTA BIOMATERIALIA, 2010, 6 (05) :1763-1771
[2]   EVALUATION OF ANTICORROSIVE PIGMENTS BY PIGMENT EXTRACT STUDIES, ATMOSPHERIC EXPOSURE AND ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY [J].
AMIRUDIN, A ;
BARREAU, C ;
HELLOUIN, R ;
THIERRY, D .
PROGRESS IN ORGANIC COATINGS, 1995, 25 (04) :339-355
[3]  
Avedesian MM., 1999, ASM Specialty Handbook: Magnesium and Magnesium Alloys
[4]  
BAI A, 2003, SURF COAT TECH, P1956
[5]   AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys -: Characterization with respect to their microstructures [J].
Baril, G ;
Blanc, C ;
Pébère, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (12) :B489-B496
[6]  
Bohm S, 2001, MATER CORROS, V52, P896, DOI 10.1002/1521-4176(200112)52:12<896::AID-MACO896>3.0.CO
[7]  
2-8
[8]  
BOINET M, 2005, SURF COAT TECHNOL, V199
[9]   Active corrosion protection and corrosion sensing in chromate-free organic coatings [J].
Buchheit, RG ;
Guan, H ;
Mahajanam, S ;
Wong, F .
PROGRESS IN ORGANIC COATINGS, 2003, 47 (3-4) :174-182
[10]   Anticorrosive behaviour of alkyd paints formulated with ion-exchange pigments [J].
Chico, B. ;
Simancas, J. ;
Vega, J. M. ;
Granizo, N. ;
Diaz, I. ;
de la Fuente, D. ;
Morcillo, M. .
PROGRESS IN ORGANIC COATINGS, 2008, 61 (2-4) :283-290