Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels

被引:131
作者
Loxley, A [1 ]
Vincent, B [1 ]
机构
[1] Univ Bristol, Sch Chem, Bristol 9S8 1TS, Avon, England
关键词
poly(2-vinylpyridine); microgels; pH-dependent swelling;
D O I
10.1007/s003960050190
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monodisperse, cationic microgels were synthesized by surfactant-free emulsion copolymerization of 2-vinylpyridine and styrene, using the cationic initiator 2,2'-azobis(2-amidinopropane) dihydrochloride. Low levels of divinylbenzene were employed as a cross-linking agent. The particle morphologies and diameters were characterized by a combination of TEM and photon correlation spectroscopy. At styrene contents less than 40% by weight, the particles were spherical with diameters of approximately 200 nm. The diameter decreased with increasing styrene content and the morphology changed from spherical to irregular. The pH-dependent swelling of the microgel particles was studied in constant ionic strength acetate buffers, as a function of styrene content and cross-link density. Particle diameters increased sharply below pH 4.6 due to ionization of the 2-vinylpyridine residues. At higher styrene levels, the transition pH is shifted to lower values and the extent of swelling is reduced. The pH at which swelling occurred was identical for the three cross-linker levels (0.25, 0.50 and 1.5 wt%), but the extent of swelling decreased in this order as expected. The rate of swelling of the particles was investigated by stopped-flow spectrophotometry; as microgels swell the turbidity of the dispersions decreases and this tvas followed as a function of time. Higher styrene contents not only reduce the extent of swelling; but also the rate at which maximum swelling is reached, whereas the level of cross-linker employed in this study has no effect oil the rate of swelling.
引用
收藏
页码:1108 / 1114
页数:7
相关论文
共 26 条
[1]   SWELLING BEHAVIOR OF PH-SENSITIVE COPOLYMERS BASED ON STYRENE AND 4-VINYLPYRIDINE OR 2-VINYLPYRIDINE [J].
BATICH, CD ;
JUN, Y ;
BUCARIA, C ;
ELSABEE, M .
MACROMOLECULES, 1993, 26 (17) :4675-4680
[2]   SYNTHESIS AND CHARACTERIZATION OF COPOLYMERS BASED ON 2-VINYLPYRIDINE AND DIVINYLBENZENE [J].
COUTINHO, FMB ;
SIQUEIRA, MIN ;
BARBOSA, CR .
EUROPEAN POLYMER JOURNAL, 1990, 26 (11) :1189-1193
[3]  
CROWTHER HM, 1997, IN PRESS COLLOID POL
[4]  
Flory P J., PRINCIPLES POLYM CHE
[5]  
HIROTSU S, 1993, ADV POLYM SCI, V110, P1
[6]  
JOHNSON KL, 1994, THESIS U BRISTOL BRI
[7]   POLYMERS - SYNTHETIC GELS ON THE MOVE [J].
KAJIWARA, K ;
ROSSMURPHY, SB .
NATURE, 1992, 355 (6357) :208-209
[8]   STUDIES ON THE PREPARATION AND CHARACTERIZATION OF POLY(4-VINYLPYRIDINE) MICROGEL .1. PREPARATION WITH POLYMER EMULSIFIER [J].
MA, GH ;
FUKUTOMI, T .
JOURNAL OF APPLIED POLYMER SCIENCE, 1991, 43 (08) :1451-1457
[9]  
MORRIS GE, 1997, J COLLOID INTERF SCI, V105, P16
[10]   CHEMICAL MODIFICATION OF ACRYLAMIDE GELS - VERIFICATION OF THE ROLE OF IONIZATION IN PHASE-TRANSITIONS [J].
NICOLI, D ;
YOUNG, C ;
TANAKA, T ;
POLLAK, A ;
WHITESIDES, G .
MACROMOLECULES, 1983, 16 (06) :887-890