Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress

被引:579
作者
Carmel-Harel, O [1 ]
Storz, G [1 ]
机构
[1] NICHHD, NIH, Bethesda, MD 20892 USA
关键词
glutaredoxin; reductase; peroxidase; OxyR; SoxR; YAP1;
D O I
10.1146/annurev.micro.54.1.439
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The glutathione- and thioredoxin-dependent reduction systems are responsible for maintaining the reduced environment of the Escherichia coli and Saccharomyces cerevisiae cytosol. Here we examine the roles of these two cellular reduction systems in the bacterial and yeast defenses against oxidative stress. The transcription of a subset of the genes encoding glutathione biosynthetic enzymes, glutathione reductases, glutaredoxins, thioredoxins, and thioredoxin reductases, as well as glutathione- and thioredoxin-dependent peroxidases is clearly induced by oxidative stress in both organisms. However, only some strains carrying mutations in single genes are hypersensitive to oxidants. This is due, in part, to the redundant effects of the gene products and the overlap between the two reduction systems. The construction of strains carrying mutations in multiple genes is helping to elucidate the different roles of glutathione and thioredoxin, and studies with such strains have recently revealed that these two reduction systems modulate the activities of the E. coli OxyR and SoxR and the S. cerevisiae Yaplp transcriptional regulators of the adaptive responses to oxidative stress.
引用
收藏
页码:439 / 461
页数:25
相关论文
共 108 条
[1]  
ALONSOMORAGA A, 1987, MOL CELL BIOCHEM, V73, P61
[2]   MOLECULAR CHARACTERIZATION OF THE SOXRS GENES OF ESCHERICHIA-COLI - 2 GENES CONTROL A SUPEROXIDE STRESS REGULON [J].
AMABILECUEVAS, CF ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (16) :4479-4484
[3]   ISOLATION AND INITIAL CHARACTERIZATION OF GLUTATHIONE-DEFICIENT MUTANTS OF ESCHERICHIA-COLI K-12 [J].
APONTOWEIL, P ;
BERENDS, W .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 399 (01) :10-22
[4]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[5]   2 ADDITIONAL GLUTAREDOXINS EXIST IN ESCHERICHIA-COLI - GLUTAREDOXIN-3 IS A HYDROGEN DONOR FOR RIBONUCLEOTIDE REDUCTASE IN A THIOREDOXIN GLUTAREDOXIN-1 DOUBLE MUTANT [J].
ASLUND, F ;
EHN, B ;
MIRANDAVIZUETE, A ;
PUEYO, C ;
HOLMGREN, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (21) :9813-9817
[6]   MUTANTS OF ESCHERICHIA-COLI SENSITIVE TO HYDROGEN-PEROXIDE [J].
BARBADO, C ;
RAMIREZ, M ;
BLANCO, MA ;
LOPEZBAREA, J ;
PUEYO, C .
CURRENT MICROBIOLOGY, 1983, 8 (05) :251-253
[7]   Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family [J].
Cha, MK ;
Kim, HK ;
Kim, IH .
JOURNAL OF BACTERIOLOGY, 1996, 178 (19) :5610-5614
[8]   THIOREDOXIN-LINKED THIOL PEROXIDASE FROM PERIPLASMIC SPACE OF ESCHERICHIA-COLI [J].
CHA, MK ;
KIM, HK ;
KIM, IH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28635-28641
[9]  
CHAE HZ, 1993, J BIOL CHEM, V268, P16815
[10]   CLONING AND SEQUENCING OF THIOL-SPECIFIC ANTIOXIDANT FROM MAMMALIAN BRAIN - ALKYL HYDROPEROXIDE REDUCTASE AND THIOL-SPECIFIC ANTIOXIDANT DEFINE A LARGE FAMILY OF ANTIOXIDANT ENZYMES [J].
CHAE, HZ ;
ROBISON, K ;
POOLE, LB ;
CHURCH, G ;
STORZ, G ;
RHEE, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7017-7021