Study of the bldG locus suggests that an anti-anti-sigma factor and an anti-sigma factor may be involved in Streptomyces coelicolor antibiotic production and sporulation

被引:44
作者
Bignell, DRD
Warawa, JL
Strap, JL
Chater, KF
Leskiw, BK
机构
[1] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada
[2] John Innes Ctr Plant Sci Res, Dept Genet, Norwich NR4 7UH, Norfolk, England
来源
MICROBIOLOGY-SGM | 2000年 / 146卷
关键词
Streptomyces; differentiation; antibiotic production; anti-sigma factor antagonist; anti-sigma factor;
D O I
10.1099/00221287-146-9-2161
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A cloned 2.5 kb DNA fragment that can restore antibiotic production and sporulation to a bldG mutant encodes a 113 aa protein showing similarity to a family of anti-anti-sigma factors from Bacillus and Staphylococcus; and the deduced product of a closely spaced downstream ORF, designated ORF3, shows similarity to cognate anti-sigma factors. The homologues in Bacillus regulate the activity of sporulation- and stress-response-specific sigma factors. However, there is no sigma factor gene near bldG and ORF3. bldG is transcribed both as a monocistronic and a polycistronic mRNA, the latter including the downstream ORF3 gene. The two transcripts were present at all time points during growth and both were upregulated when aerial mycelium and pigmented antibiotics were seen. At all time points, the monocistronic bldG transcript was two- to threefold more abundant than the polycistronic transcript. Mapping of the mRNA 5' ends indicated that bldG transcription is initiated from two transcription start sites located 82 and 123 bp upstream of the bldG translation start. A constructed bldG null mutant had the same phenotype as previously isolated bldG point mutations, some of which were shown to have potentially significant base changes within bldG. When compared to the wild-type strain, the null mutant showed no differences in the levels of transcription from the two bldG promoters. These results suggest that bldG is not involved in autoregulation.
引用
收藏
页码:2161 / 2173
页数:13
相关论文
共 62 条
[1]   BACILLUS-SUBTILIS SIGMA-B IS REGULATED BY A BINDING-PROTEIN (RSBW) THAT BLOCKS ITS ASSOCIATION WITH CORE RNA-POLYMERASE [J].
BENSON, AK ;
HALDENWANG, WG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (06) :2330-2334
[2]   REGULATION OF SIGMA(B) LEVELS AND ACTIVITY IN BACILLUS-SUBTILIS [J].
BENSON, AK ;
HALDENWANG, WG .
JOURNAL OF BACTERIOLOGY, 1993, 175 (08) :2347-2356
[3]   THE RELATIONSHIP BETWEEN BASE COMPOSITION AND CODON USAGE IN BACTERIAL GENES AND ITS USE FOR THE SIMPLE AND RELIABLE IDENTIFICATION OF PROTEIN-CODING SEQUENCES [J].
BIBB, MJ ;
FINDLAY, PR ;
JOHNSON, MW .
GENE, 1984, 30 (1-3) :157-166
[4]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[5]   The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) play's a conditional role in antibiotic production and morphological differentiation [J].
Chakraburtty, R ;
Bibb, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5854-5861
[6]  
Champness W, 2000, PROKARYOTIC DEVELOPMENT, P11
[8]   THE EXPRESSION OF STREPTOMYCES AND ESCHERICHIA-COLI DRUG-RESISTANCE DETERMINANTS CLONED INTO THE STREPTOMYCES PHAGE PHI-C31 [J].
CHATER, KF ;
BRUTON, CJ ;
KING, AA ;
SUAREZ, JE .
GENE, 1982, 19 (01) :21-32
[9]   Taking a genetic scalpel to the Streptomyces colony [J].
Chater, KF .
MICROBIOLOGY-UK, 1998, 144 :1465-1478
[10]   Three sites of contact between the Bacillus subtilis transcription factor sigma(F) and its antisigma factor SpoIIAB [J].
Decatur, AL ;
Losick, R .
GENES & DEVELOPMENT, 1996, 10 (18) :2348-2358