Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane

被引:190
作者
Zong, RL
Zhou, J [1 ]
Li, Q
Du, B
Li, B
Fu, M
Qi, XW
Li, LT
Buddhudu, S
机构
[1] Tsinghua Univ, Beijing 100084, Peoples R China
[2] Sri Venkateswara Univ, Dept Phys, Tirupati 517502, Andhra Pradesh, India
关键词
D O I
10.1021/jp0474172
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transparent Ag nanowire arrays embedded in anodic alumina membranes were prepared by a template-based approach combined with ac electrodeposition and subsequent etching of substrate. The optical response of the structure could be attributed to surface plasmon resonance (SPR) of Ag nanowires. When the incident light was perpendicular to the surface of the composite film, only the transverse resonant mode was excited, and a dual peak line shape appeared at about 400 nm in the optical absorption spectrum. The longitudinal resonance mode appeared at a longer wavelength when polarized light illuminated the film with an angle of incidence of about 70degrees, where the angle was defined with respect to the surface normal. The resonant positions and relative intensities of the two resonant modes were affected by the diameter and aspect ratio of nanowires as well as the polarization direction of incident light. In contrast to the prediction of quasistatic theory, the longitudinal resonance peak did not red shift any more while the aspect ratio was large enough.
引用
收藏
页码:16713 / 16716
页数:4
相关论文
共 38 条
[1]   Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances [J].
Ah, CS ;
Do Hong, S ;
Jang, DJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (33) :7871-7873
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]  
Bohren C., 1983, ABSORPTION SCATTERIN
[4]   Retarded field calculation of electron energy loss in inhomogeneous dielectrics [J].
de Abajo, FJG ;
Howie, A .
PHYSICAL REVIEW B, 2002, 65 (11) :1154181-11541817
[5]  
DMITRI R, 1996, J PHYS CHEM-US, V100, P14037
[6]  
Feldheim DL, 2002, METAL NANOPARTICLES: SYNTHESIS, CHARACTERIZATION, AND APPLICATIONS, P1
[7]   Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering -: art. no. 075419 [J].
Félidj, N ;
Aubard, J ;
Lévi, G ;
Krenn, JR ;
Salerno, M ;
Schider, G ;
Lamprecht, B ;
Leitner, A ;
Aussenegg, FR .
PHYSICAL REVIEW B, 2002, 65 (07) :0754191-0754199
[8]   Optimized surface-enhanced Raman scattering on gold nanoparticle arrays [J].
Félidj, N ;
Aubard, J ;
Lévi, G ;
Krenn, JR ;
Hohenau, A ;
Schider, G ;
Leitner, A ;
Aussenegg, FR .
APPLIED PHYSICS LETTERS, 2003, 82 (18) :3095-3097
[9]   OPTICAL-PROPERTIES OF COMPOSITE MEMBRANES CONTAINING ARRAYS OF NANOSCOPIC GOLD CYLINDERS [J].
FOSS, CA ;
HORNYAK, GL ;
STOCKERT, JA ;
MARTIN, CR .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (19) :7497-7499
[10]   TEMPLATE-SYNTHESIZED NANOSCOPIC GOLD PARTICLES - OPTICAL-SPECTRA AND THE EFFECTS OF PARTICLE-SIZE AND SHAPE [J].
FOSS, CA ;
HORNYAK, GL ;
STOCKERT, JA ;
MARTIN, CR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (11) :2963-2971