Uniqueness of weak solutions to systems of conservation laws

被引:69
作者
Bressan, A
LeFloch, P
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
D O I
10.1007/s002050050068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a strictly hyperbolic n x n system of conservation laws in one space dimension: u(t) + F(u)(x) = 0. (*) Relying on the existence of the Standard Riemann Semigroup generated by (*), we establish the uniqueness of entropy-admissible weak solutions to the Cauchy problem, under a mild assumption on the variation of u along spacelike segments.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1970, MATH USSR SB
[2]  
Bressan A, 1995, INDIANA U MATH J, V44, P677
[3]   The semigroup generated by 2x2 conservation laws [J].
Bressan, A ;
Colombo, RM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (01) :1-75
[4]   THE UNIQUE LIMIT OF THE GLIMM SCHEME [J].
BRESSAN, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 130 (03) :205-230
[5]  
BRESSAN A, 1996, MATH CONT, V10, P21
[6]  
BRESSAN A, 1996, WELL POSEDNESS CAUCH
[8]   GENERALIZED CHARACTERISTICS UNIQUENESS AND REGULARITY OF SOLUTIONS IN A HYPERBOLIC SYSTEM OF CONSERVATION-LAWS [J].
DAFERMOS, CM ;
GENG, X .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :231-269
[9]   UNIQUENESS OF SOLUTIONS TO HYPERBOLIC CONSERVATION-LAWS [J].
DIPERNA, RJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (01) :137-188
[10]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions