CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features

被引:66
作者
Essien, Kobby [1 ]
Vigneau, Sebastien [2 ]
Apreleva, Sofia [1 ]
Singh, Larry N. [1 ]
Bartolomei, Marisa S. [2 ]
Hannenhalli, Sridhar [1 ]
机构
[1] Univ Penn, Dept Genet, Penn Ctr Bioinformat, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
来源
GENOME BIOLOGY | 2009年 / 10卷 / 11期
关键词
INSULATOR PROTEIN CTCF; C-MYC GENE; CHROMOSOME CONFORMATION; IMPRINTED LOCI; ZINC FINGERS; SEQUENCE; DOMAIN; IDENTIFICATION; EXPRESSION; PROMOTER;
D O I
10.1186/gb-2009-10-11-r131
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: CTCF (CCCTC-binding factor) is an evolutionarily conserved zinc finger protein involved in diverse functions ranging from negative regulation of MYC, to chromatin insulation of the beta-globin gene cluster, to imprinting of the Igf2 locus. The 11 zinc fingers of CTCF are known to differentially contribute to the CTCF-DNA interaction at different binding sites. It is possible that the differences in CTCF-DNA conformation at different binding sites underlie CTCF's functional diversity. If so, the CTCF binding sites may belong to distinct classes, each compatible with a specific functional role. Results: We have classified approximately 26,000 CTCF binding sites in CD4+ T cells into three classes based on their similarity to the well-characterized CTCF DNA-binding motif. We have comprehensively characterized these three classes of CTCF sites with respect to several evolutionary, genomic, epigenomic, transcriptomic and functional features. We find that the low-occupancy sites tend to be cell type specific. Furthermore, while the high-occupancy sites associate with repressive histone marks and greater gene co-expression within a CTCF- flanked block, the low-occupancy sites associate with active histone marks and higher gene expression. We found that the low-occupancy sites have greater conservation in their flanking regions compared to high-occupancy sites. Interestingly, based on a novel class-conservation metric, we observed that human low-occupancy sites tend to be conserved as low-occupancy sites in mouse (and vice versa) more frequently than expected. Conclusions: Our work reveals several key differences among CTCF occupancy-based classes and suggests a critical, yet distinct functional role played by low-occupancy sites.
引用
收藏
页数:15
相关论文
共 54 条
[1]   CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators [J].
Bao, Lei ;
Zhou, Mi ;
Cui, Yan .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D83-D87
[2]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[3]   Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level [J].
Bruce, Alexander W. ;
Lopez-Contreras, Andres J. ;
Flicek, Paul ;
Down, Thomas A. ;
Dhami, Pawandeep ;
Dillon, Shane C. ;
Koch, Christoph M. ;
Langford, Cordelia F. ;
Dunham, Ian ;
Andrews, Robert M. ;
Vetrie, David .
GENOME RESEARCH, 2009, 19 (06) :994-1005
[4]   Integration of external signaling pathways with the core transcriptional network in embryonic stem cells [J].
Chen, Xi ;
Xu, Han ;
Yuan, Ping ;
Fang, Fang ;
Huss, Mikael ;
Vega, Vinsensius B. ;
Wong, Eleanor ;
Orlov, Yuriy L. ;
Zhang, Weiwei ;
Jiang, Jianming ;
Loh, Yuin-Han ;
Yeo, Hock Chuan ;
Yeo, Zhen Xuan ;
Narang, Vipin ;
Govindarajan, Kunde Ramamoorthy ;
Leong, Bernard ;
Shahab, Atif ;
Ruan, Yijun ;
Bourque, Guillaume ;
Sung, Wing-Kin ;
Clarke, Neil D. ;
Wei, Chia-Lin ;
Ng, Huck-Hui .
CELL, 2008, 133 (06) :1106-1117
[5]   CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide [J].
Chernukhin, Igor ;
Shamsuddin, Shaharum ;
Kang, Sung Yun ;
Bergstrom, Rosita ;
Kwon, Yoo-Wook ;
Yu, WenQiang ;
Whitehead, Joanne ;
Mukhopadhyay, Rituparna ;
Docquier, France ;
Farrar, Dawn ;
Morrison, Ian ;
Vigneron, Marc ;
Wu, Shwu-Yuan ;
Chiang, Cheng-Ming ;
Loukinov, Dmitri ;
Lobanenkov, Victor ;
Ohlsson, Rolf ;
Klenova, Elena .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (05) :1631-1648
[6]   Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains [J].
Cuddapah, Suresh ;
Jothi, Raja ;
Schones, Dustin E. ;
Roh, Tae-Young ;
Cui, Kairong ;
Zhao, Keji .
GENOME RESEARCH, 2009, 19 (01) :24-32
[7]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[8]   Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch [J].
Donohoe, Mary E. ;
Zhang, Li-Feng ;
Xu, Na ;
Shi, Yang ;
Lee, Jeannie T. .
MOLECULAR CELL, 2007, 25 (01) :43-56
[9]   Insulator and silencer sequences in the imprinted region of human chromosome 11p15.5 [J].
Du, MJ ;
Beatty, LG ;
Zhou, WJ ;
Lew, J ;
Schoenherr, C ;
Weksberg, R ;
Sadowski, PD .
HUMAN MOLECULAR GENETICS, 2003, 12 (15) :1927-1939
[10]   The evolution of the DLK1-DIO3 imprinted domain in mammals [J].
Edwards, Carol A. ;
Mungall, Andrew J. ;
Matthews, Lucy ;
Ryder, Edward ;
Gray, Dionne J. ;
Pask, Andrew J. ;
Shaw, Geoffrey ;
Graves, Jennifer A. M. ;
Rogers, Jane ;
Dunham, Ian ;
Renfree, Marilyn B. ;
Ferguson-Smith, Anne C. .
PLOS BIOLOGY, 2008, 6 (06) :1292-1305