Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks

被引:37
作者
Cho, Hyunghoon [1 ]
Berger, Bonnie [1 ,2 ]
Peng, Jian [3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
RNA-SEQ; GENE-EXPRESSION; DIMENSIONALITY REDUCTION; HETEROGENEITY; TRANSCRIPTOMICS;
D O I
10.1016/j.cels.2018.05.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Visualization algorithms are fundamental tools for interpreting single-cell data. However, standard methods, such as t-stochastic neighbor embedding (t-SNE), are not scalable to datasets with millions of cells and the resulting visualizations cannot be generalized to analyze new datasets. Here we introduce net-SNE, a generalizable visualization approach that trains a neural network to learn a mapping function from high-dimensional single-cell gene-expression profiles to a low-dimensional visualization. We benchmark net-SNE on 13 different datasets, and show that it achieves visualization quality and clustering accuracy comparable with t-SNE. Additionally we show that the mapping function learned by net-SNE can accurately position entire new subtypes of cells from previously unseen datasets and can also be used to reduce the runtime of visualizing 1.3 million cells by 36-fold (from 1.5 days to an hour). Our work provides a framework for boot-strapping single-cell analysis from existing datasets.
引用
收藏
页码:185 / +
页数:11
相关论文
共 49 条
[1]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[2]  
Amodio M., 2017, EXPLORING SINGLECELL, DOI [10.1101/237065, DOI 10.1101/237065]
[3]   Visualization and cellular hierarchy inference of single-cell data using SPADE [J].
Anchang, Benedict ;
Hart, Tom D. P. ;
Bendall, Sean C. ;
Qiu, Peng ;
Bjornson, Zach ;
Linderman, Michael ;
Nolan, Garry P. ;
Plevritis, Sylvia K. .
NATURE PROTOCOLS, 2016, 11 (07) :1264-1279
[4]  
[Anonymous], 2017, BIORXIV, DOI [DOI 10.1101/120378, 10.1101/120378]
[5]  
[Anonymous], 2008, Advances in Neural Information Processing Systems, DOI DOI 10.7751/mitpress/8996.003.0015
[6]  
[Anonymous], 2009, J Mach Learn Res
[7]   Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing [J].
Blase, Fernando H. ;
Cao, Xiaoyi ;
Zhong, Sheng .
GENOME RESEARCH, 2014, 24 (11) :1787-1796
[8]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[9]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[10]   Very Fast Interactive Visualization of Large Sets of High-dimensional Data [J].
Dzwinel, Witold ;
Wcislo, Rafal .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 :572-581