Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo

被引:50
作者
Duty, Angel O.
Oest, Megan E.
Guldberg, Robert E.
机构
[1] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2007年 / 129卷 / 04期
关键词
D O I
10.1115/1.2746375
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Despite considerable documentation of the ability of normal bone to adapt to its mechanical environment, very little is known about the response of bone grafts or their substitutes to mechanical loading even though many bone defects are located in load-bearing sites. The goal of this research was to quantify the effects of controlled in vivo mechanical stimulation on the mineralization of a tissue-engineered bone replacement and identify, the tissue level stresses and strains associated with the applied loading. A novel subcutaneous implant system was designed capable of intermittent cyclic compression of tissue-engineered constructs in vivo. Mesenchymal stem cell-seeded polymeric scaffolds with 8 weeks of in vitro preculture were placed within the loading system and implanted subcutaneously in male Fisher rats. Constructs were subjected to 2 weeks of loading (3 treatments per week for 30 min each, 13.3 N at 1 Hz) and hat-vested after 6 weeks of in vivo growth for histological examination and quantification of mineral content. Mineralization significantly increased by approximately threefold in the loaded constructs. The finite element method was used to predict tissue level stresses and strains within the construct resulting from. the applied in vivo load. The largest principal strains in the polymer were distributed about a modal value of -0.24% with strains in the interstitial space being about five times greater. Von Mises stresses in the polymer were distributed about a modal value of 1.6 MPa, while stresses in the interstitial tissue were about three orders of magnitude smaller This research demonstrates the ability of controlled in vivo mechanical stimulation to enhance mineralized matrix production on a polymeric scaffold seeded with osteogenic cells and suggests that interactions with the local mechanical environment should be considered in the design of constructs for functional bone repair.
引用
收藏
页码:531 / 539
页数:9
相关论文
共 69 条
[1]  
Akhouayri O, 2000, J CELL BIOCHEM, V76, P217, DOI 10.1002/(SICI)1097-4644(20000201)76:2<217::AID-JCB6>3.0.CO
[2]  
2-K
[3]   Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering [J].
Altman, GH ;
Lu, HH ;
Horan, RL ;
Calabro, T ;
Ryder, D ;
Kaplan, DL ;
Stark, P ;
Martin, I ;
Richmond, JC ;
Vunjak-Novakovic, G .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (06) :742-749
[4]   Design of a flow perfusion bioreactor system for bone tissue-engineering applications [J].
Bancroft, GN ;
Sikavitsas, VI ;
Mikos, AG .
TISSUE ENGINEERING, 2003, 9 (03) :549-554
[5]   Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteloblasts in a dose-dependent manner [J].
Bancroft, GN ;
Sikavitsast, VI ;
van den Dolder, J ;
Sheffield, TL ;
Ambrose, CG ;
Jansen, JA ;
Mikos, AG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12600-12605
[6]   Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold [J].
Boo, JS ;
Yamada, Y ;
Okazaki, Y ;
Hibino, Y ;
Okada, K ;
Hata, KI ;
Yoshikawa, T ;
Sugiura, Y ;
Ueda, M .
JOURNAL OF CRANIOFACIAL SURGERY, 2002, 13 (02) :231-239
[7]  
Botchwey EA, 2001, J BIOMED MATER RES, V55, P242
[8]   Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation [J].
Boutahar, N ;
Guignandon, A ;
Vico, L ;
Lafage-Proust, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (29) :30588-30599
[9]  
Brand R A, 2001, J Orthop Sci, V6, P295, DOI 10.1007/s007760100051
[10]   In vivo measurement of human tibial strains during vigorous activity [J].
Burr, DB ;
Milgrom, C ;
Fyhrie, D ;
Forwood, M ;
Nyska, M ;
Finestone, A ;
Hoshaw, S ;
Saiag, E ;
Simkin, A .
BONE, 1996, 18 (05) :405-410