Universal massive spectral correlators and three-dimensional QCD

被引:41
作者
Damgaard, PH
Nishigaki, SM
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 08期
关键词
D O I
10.1103/PhysRevD.57.5299
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Based on random matrix theory in the unitary ensemble, we derive the double-microscopic massive spectral correlators corresponding to the Dirac operator of QCD(3) with an even number of fermions N-f. We prove that these spectral correlators are universal, and demonstrate that they satisfy exact massive spectral sum rules of QCD(3) in a phase where flavor symmetries are spontaneously broken according to U(N-f)-->(N-f/2) x U(N-f/2).
引用
收藏
页码:5299 / 5302
页数:4
相关论文
共 24 条
[1]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[2]   CHIRAL SYMMETRY-BREAKING IN CONFINING THEORIES [J].
BANKS, T ;
CASHER, A .
NUCLEAR PHYSICS B, 1980, 169 (1-2) :103-125
[3]   Microscopic universality in the spectrum of the lattice Dirac operator [J].
Berbenni-Bitsch, ME ;
Meyer, S ;
Schafer, A ;
Verbaarschot, JJM ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1146-1149
[4]   CHIRAL-SYMMETRY BREAKDOWN IN LARGE-N CHROMODYNAMICS [J].
COLEMAN, S ;
WITTEN, E .
PHYSICAL REVIEW LETTERS, 1980, 45 (02) :100-102
[5]   CONFINEMENT AND CHIRAL-SYMMETRY BREAKDOWN - ESTIMATES OF F-PI AND OF EFFECTIVE QUARK MASSES [J].
CORNWALL, JM .
PHYSICAL REVIEW D, 1980, 22 (06) :1452-1468
[6]  
DAMGAARD P, HEPTH9711047
[7]  
DAMGAARD PH, HEPTH9711023
[8]   EFFECTIVE LAGRANGIANS AND CHIRAL RANDOM-MATRIX THEORY [J].
HALASZ, MA ;
VERBAARSCHOT, JJM .
PHYSICAL REVIEW D, 1995, 52 (04) :2563-2573
[9]   DIFFERENTIAL OPERATORS ON A SEMISIMPLE LIE ALGEBRA [J].
HARISHCHANDRA .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :87-120
[10]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421