Coherent and incoherent polaritonic gain in a planar semiconductor microcavity

被引:43
作者
Dasbach, G [1 ]
Baars, T [1 ]
Bayer, M [1 ]
Larionov, A [1 ]
Forchel, A [1 ]
机构
[1] Univ Wurzburg, D-97074 Wurzburg, Germany
关键词
D O I
10.1103/PhysRevB.62.13076
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The gain processes in a semiconductor microcavity in the strong coupling regime have been studied by pump-probe experiments in transmission geometry. It is demonstrated that the nonlinear signal consists of two contributions, a coherent and an incoherent one. In agreement with recent reports, the coherent gain is identified as a parametric amplification process that is driven by the probe field and stimulates the scattering of polaritons into the k(parallel to) = 0 states. We attribute the incoherent gain to scattering of randomly distributed polaritons in the predominantly excitonic part of the lower polariton branch into states with zero wave number in the lower branch. Both processes are characterized by their polarization dependence and their sensitivity to the spectral position of the pump laser beams. They also show a pronounced threshold behavior versus the pump power.
引用
收藏
页码:13076 / 13083
页数:8
相关论文
共 21 条
[1]   Polariton-polariton scattering in semiconductor microcavities:: Experimental observation of thresholdlike density dependence [J].
Baars, T ;
Bayer, M ;
Forchel, A ;
Schäfer, F ;
Reithmaier, JP .
PHYSICAL REVIEW B, 2000, 61 (04) :R2409-R2412
[2]   Suppressed polariton scattering in semiconductor microcavities [J].
Baumberg, JJ ;
Armitage, A ;
Skolnick, MS ;
Roberts, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :661-664
[3]   MODIFICATION OF SPONTANEOUS EMISSION RATE IN PLANAR DIELECTRIC MICROCAVITY STRUCTURES [J].
BJORK, G ;
MACHIDA, S ;
YAMAMOTO, Y ;
IGETA, K .
PHYSICAL REVIEW A, 1991, 44 (01) :669-681
[4]   Transition from a microcavity exciton polariton to a photon laser [J].
Cao, H ;
Pau, S ;
Jacobson, JM ;
Bjork, G ;
Yamamoto, Y ;
Imamoglu, A .
PHYSICAL REVIEW A, 1997, 55 (06) :4632-4635
[5]   Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells [J].
Ciuti, C ;
Savona, V ;
Piermarocchi, C ;
Quattropani, A ;
Schwendimann, P .
PHYSICAL REVIEW B, 1998, 58 (12) :7926-7933
[6]   Theory of the angle-resonant polariton amplifier [J].
Ciuti, C ;
Schwendimann, P ;
Deveaud, B ;
Quattropani, A .
PHYSICAL REVIEW B, 2000, 62 (08) :R4825-R4828
[7]   Stimulation of polariton photoluminescence in semiconductor microcavity [J].
Dang, LS ;
Heger, D ;
Andre, R ;
Boeuf, F ;
Romestain, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (18) :3920-3923
[8]   Linear and non-linear behavior of cavity polaritons [J].
Houdré, R ;
Weisbuch, C ;
Stanley, RP ;
Oesterle, U ;
Ilegems, M .
PHYSICA E, 2000, 7 (3-4) :625-630
[9]   MEASUREMENT OF CAVITY-POLARITON DISPERSION CURVE FROM ANGLE-RESOLVED PHOTOLUMINESCENCE EXPERIMENTS [J].
HOUDRE, R ;
WEISBUCH, C ;
STANLEY, RP ;
OESTERLE, U ;
PELLANDINI, P ;
ILEGEMS, M .
PHYSICAL REVIEW LETTERS, 1994, 73 (15) :2043-2046
[10]   Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers [J].
Imamoglu, A ;
Ram, RJ ;
Pau, S ;
Yamamoto, Y .
PHYSICAL REVIEW A, 1996, 53 (06) :4250-4253