Bounds on entanglement in qudit subsystems

被引:242
作者
Kendon, VM [1 ]
Zyczkowski, K
Munro, WJ
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BW, England
[2] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[3] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 06期
关键词
D O I
10.1103/PhysRevA.66.062310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The entanglement in a pure state of N qudits (d-dimensional distinguishable quantum particles) can be characterized by specifying how entangled its subsystems are. A generally mixed subsystem of m qudits is obtained by tracing over the other N-m qudits. We examine the entanglement in the space of mixed states of m qudits. We show that for a typical pure state of N qudits, its subsystems smaller than N/3 qudits will have a positive partial transpose and hence are separable or bound entangled. Additionally, our numerical results show that the probability of finding entangled subsystems smaller than N/3 falls exponentially in the dimension of the Hilbert space. The bulk of pure state Hilbert space thus consists of highly entangled states with multipartite entanglement encompassing at least a third of the qudits in the pure state.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]   Upper bound on the region of separable states near the maximally mixed state [J].
Deuar, P ;
Munro, WJ ;
Nemoto, K .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (03) :225-229
[3]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[4]   PROOF OF PAGES CONJECTURE ON THE AVERAGE ENTROPY OF A SUBSYSTEM [J].
FOONG, SK ;
KANNO, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1148-1151
[5]   Thermal concurrence mixing in a one-dimensional Ising model [J].
Gunlycke, D ;
Kendon, VM ;
Vedral, V ;
Bose, S .
PHYSICAL REVIEW A, 2001, 64 (04) :423021-423027
[6]  
GURVITS L, QUANTPH0204159
[7]   Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature? [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5239-5242
[8]  
Horodecki M, 2001, QUANTUM INF COMPUT, V1, P3
[9]   Separability criterion and inseparable mixed states with positive partial transposition [J].
Horodecki, P .
PHYSICS LETTERS A, 1997, 232 (05) :333-339
[10]   Maximally entangled mixed states under nonlocal unitary operations in two qubits [J].
Ishizaka, S ;
Hiroshima, T .
PHYSICAL REVIEW A, 2000, 62 (02) :4