In the phototrophic non-sulfur bacterium Rhodobacter capsulatus, the biosynthesis of the conventional Mo-nitrogenase is strictly Mo-regulated. Significant amounts of both dinitrogenase and dinitrogenase reductase were only formed when the growth medium was supplemented with molybdate (I muM). During cell growth under Mo-deficient conditions, tungstate, at high concentrations (I mM), was capable of partially (similar to25%) substituting for molybdate in the induction of nitrogenase synthesis. On the basis of such conditions, a tungsten-substituted nitrogenase was isolated from R. capsulatus with the aid of anfA (Fe-only nitrogenase defective) mutant cells and partially purified by Q-sepharose chromatography. Metal analyses revealed the protein to contain an average of I W-, 16 Fe-, and less than 0.01 Mo atoms per alpha(2)beta(2)-tetramer. The tungsten-substituted (WFe) protein was inactive in reducing N-2 and marginally active in acetylene reduction, but it was found to show considerable activity with respect to the generation of H-2 from protons. The EPR spectrum of the WFe protein, recorded at 4 K, exhibited three distinct signals: (i) an S = 3/2 signal, which dominates the low-field region of the spectrum (g = 4.19, 3.93) and is indicative of a tungsten-substituted cofactor (termed FeWco), (ii) a marginal S = 3/2 signal (g = 4.29, 3.67) that can be attributed to residual amounts of FeMoco present in the protein, and (iii) a broad S = 1/2 signal (g = 2.09, 1.95, 1.86) arising from at least two paramagnetic species. Redox titrational analysis of the WFe protein revealed the midpoint potential of the FeWco (E-m < -200 mV) to be shifted to distinctly lower potentials as compared to that of the FeMoco (E-m similar to -50 mV) present in the native enzyme. The P clusters of both the WFe and the MoFe protein appear indistinguishable with respect to their midpoint potentials. EPR spectra recorded with the WFe protein under turnover conditions exhibited a 20% decrease in the intensity of the FeWco signal, indicating that the cofactor can be enzymatically reduced only to a small extent. The data presented in the current study demonstrate the pivotal role of molybdenum in optimal N-2 fixation and provides direct evidence that the inability of a tungsten-substituted nitrogenase to reduce N-2 is due to the difficulty to effectively reduce the FeW cofactor beyond its semireduced state.