Early expression of yeast genes affected by chemical stress

被引:74
作者
Lucau-Danila, A
Lelandais, G
Kozovska, Z
Tanty, V
Delaveau, T
Devaux, F
Jacq, C
机构
[1] Ecole Normale Super, CNRS UMR 8541, Genet Mol Lab, F-75230 Paris 05, France
[2] Comenius Univ, Fac Nat Sci, Dept Microbiol & Virol, Bratislava, Slovakia
关键词
D O I
10.1128/MCB.25.5.1860-1868.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The variety of environmental stresses is probably the major challenge imposed on transcription activators and the transcriptional machinery. To precisely describe the very early genomic response developed by yeast to accommodate a chemical stress, we performed time course analyses of the modifications of the yeast gene expression program which immediately follows the addition of the antimitotic drug benomyl. Similar analyses were conducted with different isogenic yeast strains in which genes coding for relevant transcription factors were deleted and coupled with efficient bioinformatics tools. Yap1 and Pdr1, two well-known key mediators of stress tolerance, appeared to be responsible for the very rapid establishment of a transient transcriptional response encompassing 119 genes. Yap1, which plays a predominant role in this response, binds, in vivo, promoters of genes which are not automatically up-regulated. We proposed that Yap1 nuclear localization and DNA binding are necessary but not sufficient to elicit the specificity of the chemical stress response.
引用
收藏
页码:1860 / 1868
页数:9
相关论文
共 31 条
[1]   Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling [J].
Azevedo, D ;
Tacnet, F ;
Delaunay, A ;
Rodrigues-Pousada, C ;
Toledano, MB .
FREE RADICAL BIOLOGY AND MEDICINE, 2003, 35 (08) :889-900
[2]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[3]   Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae [J].
Carmel-Harel, O ;
Stearman, R ;
Gasch, AP ;
Botstein, D ;
Brown, PO ;
Storz, G .
MOLECULAR MICROBIOLOGY, 2001, 39 (03) :595-605
[4]   Using biplots to interpret gene expression patterns in plants [J].
Chapman, S ;
Schenk, P ;
Kazan, K ;
Manners, J .
BIOINFORMATICS, 2002, 18 (01) :202-204
[5]   Global transcriptional responses of fission yeast to environmental stress [J].
Chen, DR ;
Toone, WM ;
Mata, J ;
Lyne, R ;
Burns, G ;
Kivinen, K ;
Brazma, A ;
Jones, N ;
Bähler, J .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (01) :214-229
[6]  
Coleman ST, 1999, MOL CELL BIOL, V19, P8302
[7]   Yeast gene YRR1, which is required for resistance to 4-nitroquinoline N-oxide, mediates transcriptional activation of the multidrug resistance transporter gene SNQ2 [J].
Cui, Z ;
Shiraki, T ;
Hirata, D ;
Miyakawa, T .
MOLECULAR MICROBIOLOGY, 1998, 29 (05) :1307-1315
[8]   H2O2 sensing through oxidation of the Yap1 transcription factor [J].
Delaunay, A ;
Isnard, AD ;
Toledano, MB .
EMBO JOURNAL, 2000, 19 (19) :5157-5166
[9]   A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation [J].
Delaunay, A ;
Pflieger, D ;
Barrault, MB ;
Vinh, J ;
Toledano, MB .
CELL, 2002, 111 (04) :471-481
[10]   Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants [J].
DeRisi, J ;
van den Hazel, B ;
Marc, P ;
Balzi, E ;
Brown, P ;
Jacq, C ;
Goffeau, A .
FEBS LETTERS, 2000, 470 (02) :156-160