Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1

被引:30
作者
Jou, Y [1 ]
Chou, PH [1 ]
He, MC [1 ]
Hung, YH [1 ]
Yen, HCE [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Life Sci, Taichung 40227, Taiwan
关键词
AAA-type ATPase; halophyte; ice plant; salt-induced gene mcSKD1; yeast complementation;
D O I
10.1007/s11103-004-0335-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A full-length salt-induced transcript homologous to SKD1 (suppressor of K+ transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K+ (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1, a homologue gene in Arabidopsis, was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The meSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K+ uptake-defect phenotype in mutant Saccharomyces cerevisiae, which is defective in high- and low-affinity K+ uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K+ transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K+ uptake under high salinity environments are discussed.
引用
收藏
页码:881 / 893
页数:13
相关论文
共 49 条
[1]   Growth and development of Mesembryanthemum crystallinum (Aizoaceae) [J].
Adams, P ;
Nelson, DE ;
Yamada, S ;
Chmara, W ;
Jensen, RG ;
Bohnert, HJ ;
Griffiths, H .
NEW PHYTOLOGIST, 1998, 138 (02) :171-190
[2]   The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function [J].
Babst, M ;
Wendland, B ;
Estepa, EJ ;
Emr, SD .
EMBO JOURNAL, 1998, 17 (11) :2982-2993
[3]   ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting [J].
Babst, M ;
Katzmann, DJ ;
Estepa-Sabal, EJ ;
Meerloo, T ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :271-282
[4]   TONOPLAST NA+/H+ ANTIPORT ACTIVITY AND ITS ENERGIZATION BY THE VACUOLAR H+-ATPASE IN THE HALOPHYTIC PLANT MESEMBRYANTHEMUM-CRYSTALLINUM L [J].
BARKLA, BJ ;
ZINGARELLI, L ;
BLUMWALD, E ;
SMITH, JAC .
PLANT PHYSIOLOGY, 1995, 109 (02) :549-556
[5]  
Beyer A, 1997, PROTEIN SCI, V6, P2043
[6]   INTRACELLULAR COMPARTMENTATION OF IONS IN SALT ADAPTED TOBACCO CELLS [J].
BINZEL, ML ;
HESS, FD ;
BRESSAN, RA ;
HASEGAWA, PM .
PLANT PHYSIOLOGY, 1988, 86 (02) :607-614
[7]   ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking [J].
Bishop, N ;
Woodmane, P .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (01) :227-239
[8]   INDUCTION OF CRASSULACEAN ACID METABOLISM IN THE FACULTATIVE HALOPHYTE MESEMBRYANTHEMUM-CRYSTALLINUM BY ABSCISIC-ACID [J].
CHU, C ;
DAI, ZY ;
KU, MSB ;
EDWARDS, GE .
PLANT PHYSIOLOGY, 1990, 93 (03) :1253-1260
[9]   LIFE IN UNUSUAL ENVIRONMENTS - PROGRESS IN UNDERSTANDING THE STRUCTURE AND FUNCTION OF ENZYMES FROM EXTREME HALOPHILIC BACTERIA [J].
EISENBERG, H .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 318 (01) :1-5
[10]   AtKUP1:: A dual-affinity K+ transporter from Arabidopsis [J].
Fu, HH ;
Luan, S .
PLANT CELL, 1998, 10 (01) :63-73