Russian doll assembled superanion capsule-metal ion complexes: combinatorial supramolecular chemistry in aqueous media

被引:110
作者
Hardie, MJ [1 ]
Raston, CL [1 ]
机构
[1] Monash Univ, Dept Chem, Melbourne, Vic 3800, Australia
来源
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS | 2000年 / 15期
关键词
D O I
10.1039/b002047h
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The focus of this perspective is the self assembly in aqueous solutions (pH < 3.5) of the synthons sodium p-sulfonatocalix[4]arene and 18-crown-6, or related macrocycles, into globular superanions or ionic capsules, for example {Na(+)subset of(18-crown-6)(OH2)(n)}subset of{(p-sulfonatocalix[4]arene(4-))(2)}(7-), n=0 or 2. These can crystallise, often selectively, polynuclear hydrolytic metal(III) cations [M-2(OH)(2)(H2O)(8)](4+), [M-3(OH)(4)(H2O)(10)](5+), [M-4(OH)(6)(H2O)(12)](6+), M=Cr or Rh, or [Al13O4(OH)(24)(H2O)(12)](7+), depending on the pH and other synthetic parameters, which are established using a combinatorial approach. These superanions are ambivalent; two calixarenes shroud a crown ether with a central sodium ion bound also by two trans-water molecules or two oxygen centres of sulfonate groups from each of the calixarenes. Electrostatic repulsion between the negatively charged calixarenes is compensated by the large polynuclear cations interacting with the negatively charged hydrophilic equatorial region of the capsule, and some protonation of the sulfonate groups. Similarly, protonated cyclam forms a capsule with two calixarenes and crystallises [Cr-2(OH)(2)(H2O)(8)](4+). Lanthanide(III) ions form a range of complexes at specific pH in the presence of the calixarene and crown ether, including complexes containing the capsule [{18-crown-6}subset of{(M(H2O)(7)(3+))(1.33)(p-sulfonatocalix[4]arene(4-))}(2)], for the smaller lanthanides, or the ferris wheel type structure [{La(3+)subset of(18-crown-6)(OH2)(3)}boolean AND{(p-sulfonatocalix[4]arene(4-)+2H(+))}](+), for the larger lanthanide. Only some of the continuous structures have an up-down bilayer arrangement of calixarenes.
引用
收藏
页码:2483 / 2492
页数:10
相关论文
共 91 条
[1]   Cyclam as a supramolecular synthon: infinite stacked arrays to encapsulation in superanions [J].
Airey, S ;
Drljaca, A ;
Hardie, MJ ;
Raston, CL .
CHEMICAL COMMUNICATIONS, 1999, (12) :1137-1138
[2]   AL-27 NUCLEAR MAGNETIC-RESONANCE STUDIES OF THE HYDROLYSIS OF ALUMINUM(III) .5. SLOW HYDROLYSIS USING ALUMINUM METAL [J].
AKITT, JW ;
FARTHING, A .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1981, (07) :1624-1628
[3]   NEW AL-27 NMR-STUDIES OF THE HYDROLYSIS OF THE ALUMINUM(III) CATION [J].
AKITT, JW ;
FARTHING, A .
JOURNAL OF MAGNETIC RESONANCE, 1978, 32 (03) :345-352
[4]   AL-27 NUCLEAR MAGNETIC-RESONANCE STUDIES OF THE HYDROLYSIS OF ALUMINUM(III) .4. HYDROLYSIS USING SODIUM-CARBONATE [J].
AKITT, JW ;
FARTHING, A .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1981, (07) :1617-1623
[5]  
Arena G, 1999, CHEM-EUR J, V5, P738
[6]   DOUBLE PARTIAL CONE CONFORMATION FOR NA8(CALIX[6]ARENE SULFONATE).20 5H2O AND ITS PARENT ACID [J].
ATWOOD, JL ;
CLARK, DL ;
JUNEJA, RK ;
ORR, GW ;
ROBINSON, KD ;
VINCENT, RL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (19) :7558-7559
[7]   X-RAY-DIFFRACTION EVIDENCE FOR AROMATIC PI HYDROGEN-BONDING TO WATER [J].
ATWOOD, JL ;
HAMADA, F ;
ROBINSON, KD ;
ORR, GW ;
VINCENT, RL .
NATURE, 1991, 349 (6311) :683-684
[8]   ORGANIC CLAYS - SYNTHESIS AND STRUCTURE OF NA5[CALIX[4]ARENE SULFONATE].12 H2O, K5[4]ARENE SULFONATE].8 H2O, RB5[CALIX[4]ARENE SULFONATE].5 H2O, AND CS5[CALIX[4]ARENE SULFONATE].4 H2O [J].
ATWOOD, JL ;
COLEMAN, AW ;
ZHANG, H ;
BOTT, SG .
JOURNAL OF INCLUSION PHENOMENA, 1989, 7 (02) :203-211
[9]   X-ray structure of the water soluble [adeninium][p-sulfonatocalix[4]arene] which displays cationic and anionic bilayers [J].
Atwood, JL ;
Barbour, LJ ;
Dawson, ES ;
Junk, PC ;
Kienzle, J .
SUPRAMOLECULAR CHEMISTRY, 1996, 7 (04) :271-274
[10]   METAL-ION COMPLEXES OF WATER-SOLUBLE CALIX[4]ARENES [J].
ATWOOD, JL ;
ORR, GW ;
MEANS, NC ;
HAMADA, F ;
ZHANG, HM ;
BOTT, SG ;
ROBINSON, KD .
INORGANIC CHEMISTRY, 1992, 31 (04) :603-606