Multicategory classification using an Extreme Learning Machine for Microarray gene expression cancer diagnosis

被引:104
作者
Zhang, Runxuan
Huang, Guang-Bin
Sundararajan, Narasimhan
Saratchandran, P.
机构
[1] Inst Pasteur, Dept Genomes & Genet, Syst Biol Unit, F-75724 Paris, France
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
extreme learning machine; gene expression; microarray; multicategory; classification; SVM;
D O I
10.1109/TCBB.2007.1012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, the recently developed Extreme Learning Machine ( ELM) is used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima, improper learning rate and overfitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multicategory classification performance of ELM on three benchmark microarray data sets for cancer diagnosis, namely, the GCM data set, the Lung data set, and the Lymphoma data set. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine methods like SVM-OVO and Ramaswamy's SVM-OVA. ELM also achieves better accuracies for classification of individual categories.
引用
收藏
页码:485 / 495
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 2004, P INT JOINT C NEUR N
[2]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[3]   Can threshold networks be trained directly? [J].
Huang, GB ;
Zhu, QY ;
Mao, KZ ;
Siew, CK ;
Saratchandran, P ;
Sundararajan, N .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (03) :187-191
[4]   Learning capability and storage capacity of two-hidden-layer feedforward networks [J].
Huang, GB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (02) :274-281
[5]  
HUANG GB, 2005, INT INFORM TECHNOLOG, V11
[6]  
Huang GB, 2004, P 8 INT C CONTR AUT
[7]   Universal approximation using incremental constructive feedforward networks with random hidden nodes [J].
Huang, Guang-Bin ;
Chen, Lei ;
Siew, Chee-Kheong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :879-892
[8]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679
[9]   An extensive comparison of recent classification tools applied to microarray data [J].
Lee, JW ;
Lee, JB ;
Park, M ;
Song, SH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (04) :869-885
[10]   Fully complex extreme learning machine [J].
Li, MB ;
Huang, GB ;
Saratchandran, P ;
Sundararajan, N .
NEUROCOMPUTING, 2005, 68 (1-4) :306-314