The negative hypergeometric probability distribution: Sampling without replacement from a finite population

被引:3
作者
Berry, KJ [1 ]
Mielke, PW [1 ]
机构
[1] Colorado State Univ, Dept Sociol, Ft Collins, CO 80523 USA
关键词
D O I
10.2466/pms.1998.86.1.207
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The negative hypergeometric probability distribution is defined and its relationship to the inverse hypergeometric probability distribution is clarified. A FORTRAN program is described which computes negative hypergeometric probability values and, for a specified probability, the minimum sample size needed to attain a given number of successes.
引用
收藏
页码:207 / 210
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1965, REV STAT APPL
[2]  
[Anonymous], STAT NEERLANDICA
[3]   Exact confidence limits for population proportions based on the negative hypergeometric probability distribution [J].
Berry, KJ ;
Mielke, PW .
PERCEPTUAL AND MOTOR SKILLS, 1996, 83 (03) :1216-1218
[4]  
CHAE KC, 1993, INT J MATH ED SCI TE, V24, P523
[5]   AVERAGE SAMPLE NUMBER FOR TRUNCATED DOUBLE SAMPLE ATTRIBUTE PLANS [J].
GUENTHER, WC .
TECHNOMETRICS, 1971, 13 (04) :811-&
[6]  
Johnson N.L., 1977, URN MODELS THEIR APP, DOI DOI 10.1038/nature02398
[7]  
Johnson N.L., 1992, UNIVARIATE DISCRETE
[8]  
KARAKOSTAS KX, 1992, METRON, V50, P215
[9]  
MATUSZEWSKI TI, 1962, J AM STAT ASSOC, V57, P919, DOI 10.2307/2281825
[10]   SOME PROPERTIES OF PASCAL DISTRIBUTION OR FINITE POPULATION [J].
MATUSZEWSKI, TI .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1962, 57 (297) :172-&