Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks

被引:76
作者
Abad, E. [1 ]
Yuste, S. B. [1 ]
Lindenberg, Katja [2 ,3 ]
机构
[1] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.81.031115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Starting from a continuous-time random-walk (CTRW) model of particles that may evanesce as they walk, our goal is to arrive at macroscopic integrodifferential equations for the probability density for a particle to be found at point r at time t given that it started its walk from r(0) at time t=0. The passage from the CTRW to an integrodifferential equation is well understood when the particles are not evanescent. Depending on the distribution of stepping times and distances, one arrives at standard macroscopic equations that may be "normal" (diffusion) or "anomalous" (subdiffusion and/or superdiffusion). The macroscopic description becomes considerably more complicated and not particularly intuitive if the particles can die during their walk. While such equations have been derived for specific cases, e.g., for location-independent exponential evanescence, we present a more general derivation valid under less stringent constraints than those found in the current literature.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
[Anonymous], ANOMALOUS TRANSPORT
[2]  
[Anonymous], 1995, Oxford science publications
[3]   Nonuniversality and the role of tails in reaction-subdiffusion fronts [J].
Campos, Daniel ;
Mendez, Vicenc .
PHYSICAL REVIEW E, 2009, 80 (02)
[4]  
Crank J., 2004, MATH DIFFUSION
[5]   Continuous-time random walks with internal dynamics and subdiffusive reaction-diffusion equations [J].
Eule, S. ;
Friedrich, R. ;
Jenko, F. ;
Sokolov, I. M. .
PHYSICAL REVIEW E, 2008, 78 (06)
[6]   Migration and proliferation dichotomy in tumor-cell invasion [J].
Fedotov, Sergei ;
Iomin, Alexander .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[7]   Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts [J].
Fedotov, Sergei .
PHYSICAL REVIEW E, 2010, 81 (01)
[8]   Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations [J].
Henry, B. I. ;
Langlands, T. A. M. ;
Wearne, S. L. .
PHYSICAL REVIEW E, 2006, 74 (03)
[9]   Anomalous subdiffusion with multispecies linear reaction dynamics [J].
Langlands, T. A. M. ;
Henry, B. I. ;
Wearne, S. L. .
PHYSICAL REVIEW E, 2008, 77 (02)
[10]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77