Modeling and prediction of multivariate space-time random fields

被引:24
作者
De Iaco, S
Palma, M
Posa, D
机构
[1] Fac Econ, Dipartimento Sci Econ & Matemat Stat, I-73100 Lecce, Italy
[2] CNR, IRMA, I-70126 Bari, Italy
关键词
multivariate space-time random field; space-time linear coregionalization model; space-time prediction;
D O I
10.1016/j.csda.2004.02.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In various environmental studies multivariate spatial-temporal correlated data are involved, hence appropriate techniques to enhance space-time prediction are in great demand. An extension of multivariate spatial geostatistics to a spatio-temporal domain might be a straightforward task; nevertheless, up to now, little has been done in a multivariate spatial-temporal context. Modeling and prediction techniques are described for a multivariate space-time random field, moreover some theoretical and practical aspects are investigated for a bivariate space-time random field through a case study. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:525 / 547
页数:23
相关论文
共 33 条
[1]  
[Anonymous], 1970, Complex Variables
[2]  
[Anonymous], GEOSTATISTICS
[3]  
[Anonymous], GEOSTATISTICS WOLLON
[4]  
Brockwell P. J., 1987, TIME SERIES THEORY M
[5]  
CHILES J, 1999, GEOSTATISTICS
[6]  
Christakos G., 1992, Random field models in earth sciences
[7]  
Christakos G, 1998, SPATIOTEMPORAL ENV H
[8]   Classes of nonseparable, spatio-temporal stationary covariance functions [J].
Cressie, N ;
Huang, HC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) :1330-1340
[9]  
Cressie NA, 1991, STAT SPATIAL DATA
[10]  
Daley R., 1991, Atmospheric data analysis