CALIOP Aerosol Subset Processing for Global Aerosol Transport Model Data Assimilation

被引:21
作者
Campbell, James R. [1 ]
Reid, Jeffrey S.
Westphal, Douglas L.
Zhang, Jianglong [2 ]
Hyer, Edward J. [1 ]
Welton, Ellsworth J. [3 ]
机构
[1] USN, Res Lab, Univ Corp, Atmospher Res Visiting Scientist Programs, Monterey, CA 93943 USA
[2] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
Aerosols; laser radar; modeling; satellite applications;
D O I
10.1109/JSTARS.2010.2044868
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A system for processing Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-based 0.532 and 1.064 mu m elastic and polarization lidar datasets for global aerosol transport model assimilation is described. A method for constructing one-degree along-track and cloud-free signal composite averages, consistent with Navy Aerosol Analysis and Prediction System (NAAPS) model gridding, using CALIOP Level 1B attenuated backscatter and Level 2 cloud boundary-height products is outlined. Optimal vertical resolutions and relative signal uncertainties for the composite signal averages are described for both day and nighttime measurement scenarios. Depolarization profiles are described for the 0.532 mu m channel as well as attenuated color ratio profiles using 0.532 and 1.064 mu m attenuated backscatter measurements. Constrained by NAAPS model aerosol optical depths, processed attenuated backscatter profiles are inverted to solve for extinction and backscatter coefficients, their ratio, and extinction coefficient profiles which serve as the basis for data assimilation.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 49 条
[1]  
Winker D.M., Hunt W.H., McGill M.J., Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, (2007)
[2]  
Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A., Liu Z., Hunt W.H., Young S.A., Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic. Technol., (2009)
[3]  
Hunt W.H., Winker D.M., Vaughffan M.A., Powell K.A., Lucker P.L., Weimer C., CALIPSO lidar description and performance assessment, J. Atmos. Oceanic Technol., 26, pp. 1214-1228, (2009)
[4]  
Stephens G.L., Et al., The Cloud-Sat mission and the A-train, Bull. Amer. Meteorol. Soc., 83, 12, pp. 1771-1790, (2002)
[5]  
Daley R., Atmospheric Data Analysis, (1991)
[6]  
Dabberdt W.F., Schlatter T.W., Research opportunities from emerging atmospheric observing and modeling capabilities, Bull. Amer. Meteorol. Soc., 77, pp. 305-323, (1996)
[7]  
McNally A.P., Vesperini M., Variational analysis of humidity information from TOVS radiances, Q. J. R. Meteorol. Soc., 122, pp. 1521-1544, (1996)
[8]  
Tomassini M., Kelly G., Saunders R., Use and impact of satellite atmospheric motion winds on ECMWF analyses and forecasts, Mon. Weather Rev., 127, pp. 971-986, (1999)
[9]  
Weaver C., da Silva M., Ginoux P., Dubovik O., Flittner D., Zia A., Remer L., Holben B., Gregg W., Direct insertion of MODIS radiances in a global aerosol transport model, J. Atmos. Sci., 64, pp. 808-826, (2007)
[10]  
Zhang J., Reid J.S., MODIS aerosol product analysis for data assimilation: assessment of over-ocean level 2 aerosol optical thickness retrievals, J. Geophys. Res., 111, (2006)