Transport Effects in the Electrooxidation of Methanol Studied on Nanostructured Pt/Glassy Carbon Electrodes

被引:60
作者
Seidel, Y. E. [1 ]
Schneider, A. [1 ]
Jusys, Z. [1 ]
Wickman, B. [2 ]
Kasemo, B. [2 ]
Behm, R. J. [1 ]
机构
[1] Univ Ulm, Inst Surface Chem & Catalysis, D-89069 Ulm, Germany
[2] Chalmers Univ Technol, Dept Appl Phys, SE-41296 Gothenburg, Sweden
关键词
PLANAR MODEL CATALYSTS; ELECTROCHEMICAL OXIDATION; MASS-SPECTROSCOPY; SURFACE-STRUCTURE; OXYGEN REDUCTION; SINGLE-CRYSTAL; ADSORBED CO; PLATINUM; PTRU; ACTIVATION;
D O I
10.1021/la902962g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transport effects in the methanol oxidation reaction (MOR) were investigated using nanostructured Pt/glassy carbon (GC) electrodes and, for comparison, a polycrystalline Pt electrode. The nanostructured Pt/GC electrodes, consisting of a regular array of catalytically active cylindrical Pt nanostructures with 55 +/- 10 nm in diameter and different densities supported on a planar GC substrate, were fabricated employing hole-mask colloidal lithography (HCL). The MOR measurements were performed under controlled transport conditions in a thin-layer flow cell interfaced to a differential electrochemical mass spectrometry (DEMS) setup. The measurements reveal a distinct variation in the MOR activity and selectivity (product distribution) with Pt nanostructure density and with electrolyte rate, showing an increasing overall activity, reflected by a higher Faradaic reaction current, as well as a pronounced increase of the turnover frequency for CO2 formation and of the CO2 current efficiency with decreasing flow rate and increasing Pt coverage. These findings are discussed in terms of the "desorption-readorption-reaction" model introduced recently (Seidel et al. Faraday Discuss 2008, 140, 67). Finally, consequences for applications in direct methanol fuel cells are outlined.
引用
收藏
页码:3569 / 3578
页数:10
相关论文
共 75 条
[1]  
ALBERY WJ, 1986, CHEM KINETICS, V29
[2]  
ANGERSTE.H, 1973, J ELECTROANAL CHEM, V43, P9, DOI 10.1016/0368-1874(73)80226-6
[3]  
BAGOTZKY VS, 1977, J ELECTROANAL CHEM, V81, P229, DOI 10.1016/S0022-0728(77)80019-3
[4]   Differential electrochemical mass spectrometry [J].
Baltruschat, H .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2004, 15 (12) :1693-1706
[5]  
Bard AJ, 2001, MG ELEC CH, P1
[6]   Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts [J].
Bergamaski, Kleber ;
Pinheiro, Alexei L. N. ;
Teixeira-Neto, Erico ;
Nart, Francisco C. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (39) :19271-19279
[7]  
BIEGLER T, 1971, J ELECTROANAL CHEM, V29, P269, DOI 10.1016/0368-1874(71)85078-5
[8]  
BRETT CMA, 1986, CHEM KINETICS, V26
[9]   Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon [J].
Chen, SL ;
Kucernak, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (10) :3262-3276
[10]   Thermal evolution of a platinum cluster encapsulated in carbon nanotubes [J].
Cheng, Daojian ;
Wang, Wenchuan ;
Huang, Shiping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (04) :1631-1637