The biosynthesis of the thiazole phosphate moiety of thiamin: The sulfur transfer mediated by the sulfur carrier protein ThiS
被引:51
作者:
Dorrestein, PC
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USACornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
Dorrestein, PC
[1
]
Zhai, HL
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USACornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
Zhai, HL
[1
]
McLafferty, FW
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USACornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
McLafferty, FW
[1
]
Begley, TP
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USACornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
Begley, TP
[1
]
机构:
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
来源:
CHEMISTRY & BIOLOGY
|
2004年
/
11卷
/
10期
关键词:
D O I:
10.1016/j.chembiol.2004.08.009
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Thiamin-pyrophosphate is an essential cofactor in all living systems. The biosynthesis of both the thiazole and the pyrimidine moieties of this cofactor involves new biosynthetic chemistry. Thiazole-phosphate synthase (ThiG) catalyses the formation of the thiazole moiety of thiamin-pyrophosphate from 1-deoxy-Dxylulose-5-phosphate (DXP), dehydroglycine and the sulfur carrier protein (ThiS), modified on its carboxy terminus as a thiocarboxylate (ThiS-thiocarboxylate). Thiazole biosynthesis is initiated by the formation of a ThiG/DXP imine, which then tautomerizes to an aminoketone. In this paper we study the sulfur transfer from ThiS-thiocarboxylate to this amino-ketone and trap a new thioenolate intermediate. Surprisingly, thiazole formation results in the replacement of the ThiS-thiocarboxylate sulfur with an oxygen from DXP and not from the buffer, as shown by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) using O-18 labeling of the C-13-, N-15-depleted protein. These observations further clarify the mechanism of the complex thiazole biosynthesis in bacteria.