Magnetic resonance imaging of the knee was performed in 28 patients (ages 15-72 years), using a 1.5-T unit. Volume gradient echo (3D GRASS) acquisition with and without presaturation off-resonance RF pulse was used to evaluate magnetization transfer (MT) effects, determined by placing regions of interest on muscle, fat, hyaline, and fibrocartilage; the percent change in signal intensity was calculated and compared using a paired two-sample t test. An in vitro study of the normal meniscus from a cadaver containing a scalpel cut extending to an articular surface was performed to observe the relative improvement in contrast in the presence of a small meniscal defect. MR imaging of the specimen was performed using an Omega CSI 2.0-T system (General Electric Medical Systems, Fremont, CA). Analysis of clinical images resulted in signal loss, compared to that of the identically timed and tuned non-MT images of 47 +/- 5, 8 +/- 5, 49 +/- 5, and 57 +/- 7% for muscle, fat, articular cartilage and fibrocartilage, respectively. Application of MT improved the depiction of the artificially introduced meniscal defect. Meniscal fibrocartilage demonstrates significant MT effect after application of off-resonance RF presaturation, which may improve visualization of meniscal defects.