Role of gut microbiota in the control of energy and carbohydrate metabolism

被引:89
作者
Venema, Koen [1 ]
机构
[1] TNO Qual Life, Dept Biosci, NL-3700 AJ Zeist, Netherlands
关键词
energy harvesting; gut microbiota; short-chain fatty acids; stable isotopes; BUTYRATE-PRODUCING BACTERIA; IN-VITRO MODEL; LARGE-INTESTINE; WEIGHT-LOSS; COLONIC MICROBIOTA; HEALTHY HUMANS; OBESITY; RNA; DIVERSITY; ADOLESCENTS;
D O I
10.1097/MCO.0b013e32833a8b60
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. Recent findings Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy harvesting and obesity have not been confirmed in recent studies. In fact, sometimes, the opposite results were obtained. Nevertheless, it is clear that the microbiota plays a role in energy extraction from nondigested carbohydrates in the form of production of short-chain fatty acids. Also, the microbiota plays a role in host metabolism by influencing and modulating host gene expression in various tissues. Summary Despite numerous recent studies trying to link the composition of the microbiota to obesity, the picture is far from clear, and it remains to be seen whether changes in microbiota composition are the cause or the consequence of obesity. Molecular studies reveal the enzyme machineries used by individual members of the microbiota to break down and ferment polysaccharides. Also, the mechanisms of host-microbe mutualism are becoming unraveled. Using stable-isotope-labeled substrates, the exact microorganisms involved in fermentation of the substrates and the exact metabolites that are produced from the substrate can be deciphered.
引用
收藏
页码:432 / 438
页数:7
相关论文
共 61 条
[1]   Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients [J].
Armougom, Fabrice ;
Henry, Mireille ;
Vialettes, Bernard ;
Raccah, Denis ;
Raoult, Didier .
PLOS ONE, 2009, 4 (09)
[2]   The gut microbiota as an environmental factor that regulates fat storage [J].
Bäckhed, F ;
Ding, H ;
Wang, T ;
Hooper, LV ;
Koh, GY ;
Nagy, A ;
Semenkovich, CF ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15718-15723
[3]  
Bäckhed F, 2009, J PEDIATR GASTR NUTR, V48, pS56, DOI 10.1097/MPG.0b013e3181a11851
[4]   Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis [J].
Ben-Amor, K ;
Heilig, H ;
Smidt, H ;
Vaughan, EE ;
Abee, T ;
de Vos, WM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (08) :4679-4689
[5]   ESSAY What are the consequences of the disappearing human microbiota? [J].
Blaser, Martin J. ;
Falkow, Stanley .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (12) :887-894
[6]  
BLOEMEN JG, 2009, CLIN NUTR
[7]   Short chain fatty acids exchange across the gut and liver in humans measured at surgery [J].
Bloemen, Johanne G. ;
Venema, Koen ;
de Poll, Marcel C. van ;
Damink, Steven W. Olde ;
Buurman, Wim A. ;
Dejong, Cornelis H. .
CLINICAL NUTRITION, 2009, 28 (06) :657-661
[8]   Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability [J].
Cani, P. D. ;
Possemiers, S. ;
Van de Wiele, T. ;
Guiot, Y. ;
Everard, A. ;
Rottier, O. ;
Geurts, L. ;
Naslain, D. ;
Neyrinck, A. ;
Lambert, D. M. ;
Muccioli, G. G. ;
Delzenne, N. M. .
GUT, 2009, 58 (08) :1091-1103
[9]   Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota [J].
Cani, Patrice D. ;
Delzenne, Nathalie M. .
CURRENT OPINION IN PHARMACOLOGY, 2009, 9 (06) :737-743
[10]   The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease [J].
Cani, Patrice D. ;
Delzenne, Nathalie M. .
CURRENT PHARMACEUTICAL DESIGN, 2009, 15 (13) :1546-1558