Orthogonality relations in quantum tomography

被引:24
作者
D'Ariano, GM
Maccone, L
Paris, MGA
机构
[1] Univ Pavia, INFM, Theoret Quantum Opt Grp, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Fis A Volta, I-27100 Pavia, Italy
关键词
D O I
10.1016/S0375-9601(00)00660-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum estimation of the operators of a system is investigated by analyzing its Liouville space of operators. In this way it is possible to easily derive some general characterizations for the sets of observables (i.e., the possible quorums) that are measured for the quantum estimation. In particular we analyze the reconstruction of operators of spin systems. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 9 条
[1]   Universal quantum estimation [J].
D'Ariano, GM .
PHYSICS LETTERS A, 2000, 268 (03) :151-157
[2]   HOMODYNE DETECTION OF THE DENSITY-MATRIX OF THE RADIATION-FIELD [J].
DARIANO, GM ;
LEONHARDT, U ;
PAUL, H .
PHYSICAL REVIEW A, 1995, 52 (03) :R1801-R1804
[3]   DETECTION OF THE DENSITY-MATRIX THROUGH OPTICAL HOMODYNE TOMOGRAPHY WITHOUT FILTERED BACK-PROJECTION [J].
DARIANO, GM ;
MACCHIAVELLO, C ;
PARIS, MGA .
PHYSICAL REVIEW A, 1994, 50 (05) :4298-4302
[4]  
DARIANO GM, UNPUB QUORUM OBSERVA
[5]  
DARIANO GM, 1997, QUANTUM OPTICS SPECT, P175
[7]  
MURNAGHAN FD, 1938, THEORY GROUP REPRESE, P216
[8]  
Richtmyer R.D., 1978, Principles of Advanced Mathematical Physics, V1
[9]   Quantum time evolution in terms of nonredundant probabilities [J].
Weigert, S .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :802-805