Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase

被引:145
作者
Petronzelli, F
Riccio, A
Markham, GD
Seeholzer, SH
Stoerker, J
Genuardi, M
Yeung, AT
Matsumoto, Y
Bellacosa, A
机构
[1] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA
[2] Univ Cattolica Sacro Cuore, Sch Med, Dept Med Genet, I-00168 Rome, Italy
[3] Bruker Daltonics Inc, Billerica, MA 01821 USA
关键词
D O I
10.1074/jbc.M004535200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine, MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.
引用
收藏
页码:32422 / 32429
页数:8
相关论文
共 50 条
[1]   A TETRAHEDRAL INTERMEDIATE IN THE EPSP SYNTHASE REACTION OBSERVED BY RAPID QUENCH KINETICS [J].
ANDERSON, KS ;
SIKORSKI, JA ;
JOHNSON, KA .
BIOCHEMISTRY, 1988, 27 (19) :7395-7406
[2]   PURIFICATION AND CHARACTERIZATION OF ESCHERICHIA-COLI ENDONUCLEASE-III FROM THE CLONED NTH GENE [J].
ASAHARA, H ;
WISTORT, PM ;
BANK, JF ;
BAKERIAN, RH ;
CUNNINGHAM, RP .
BIOCHEMISTRY, 1989, 28 (10) :4444-4449
[3]   ESCHERICHIA-COLI MUTY GENE ENCODES AN ADENINE GLYCOSYLASE ACTIVE ON G-A MISPAIRS [J].
AU, KG ;
CLARK, S ;
MILLER, JH ;
MODRICH, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (22) :8877-8881
[4]   Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency [J].
Bader, S ;
Walker, M ;
Heindrich, B ;
Bird, A ;
Bird, C ;
Hooper, M ;
Wyllie, A .
ONCOGENE, 1999, 18 (56) :8044-8047
[5]   ANALYSIS OF NUMERICAL-METHODS FOR COMPUTER-SIMULATION OF KINETIC PROCESSES - DEVELOPMENT OF KINSIM - A FLEXIBLE, PORTABLE SYSTEM [J].
BARSHOP, BA ;
WRENN, RF ;
FRIEDEN, C .
ANALYTICAL BIOCHEMISTRY, 1983, 130 (01) :134-145
[6]   MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1 [J].
Bellacosa, A ;
Cicchillitti, L ;
Schepis, F ;
Riccio, A ;
Yeung, AT ;
Matsumoto, Y ;
Golemis, EA ;
Genuardi, M ;
Neri, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3969-3974
[7]  
Bird AP, 1996, CANCER SURV, V28, P87
[8]   ROLES OF ETHENO-DNA ADDUCTS IN TUMORIGENICITY OF OLEFINS [J].
BOLT, HM .
CRC CRITICAL REVIEWS IN TOXICOLOGY, 1988, 18 (04) :299-309
[9]   THE ENZYMOLOGY OF APURINIC APYRIMIDINIC ENDONUCLEASES [J].
DOETSCH, PW ;
CUNNINGHAM, RP .
MUTATION RESEARCH, 1990, 236 (2-3) :173-201
[10]   DNA MISMATCH BINDING AND INCISION AT MODIFIED GUANINE BASES BY EXTRACTS OF MAMMALIAN-CELLS - IMPLICATIONS FOR TOLERANCE TO DNA METHYLATION DAMAGE [J].
GRIFFIN, S ;
BRANCH, P ;
XU, YZ ;
KARRAN, P .
BIOCHEMISTRY, 1994, 33 (16) :4787-4793