TOMCAT: A MATLAB toolbox for multivariate calibration techniques

被引:170
作者
Daszykowski, Michal
Serneels, Sven
Kaczmarek, Krzysztof
Van Espen, Piet
Croux, Christophe
Walczak, Beata
机构
[1] Silesian Univ, Dept Chemometr, PL-40006 Katowice, Poland
[2] Univ Antwerp, Micro & Trace Anal Ctr, B-2610 Antwerp, Belgium
[3] Katholieke Univ Leuven, Fac Econ & Appl Econ, B-3000 Louvain, Belgium
关键词
Partial Robust M-Regression; robust continuum regression; multivariate calibration; nonlinear modeling; radial basis functions partial least squares;
D O I
10.1016/j.chemolab.2006.03.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We have developed a new user-friendly graphical interface for robust calibration with a collection of in-files, called TOMCAT (TOolbox for Multivariate CAlibration Techniques). The graphical interface and its routines are freely available and programmed in MATLAB 6.5, probably one of the most popular programming environments in the chemometrics community. The graphical interface allows a user to apply the implemented methods in an easy way and it gives a straightforward possibility to visualize the obtained results. Several useful features such as interactive numbering of the displayed objects on a plot, viewing the content of the data, easy transfer of the data between the toolbox and the MATLAB workspace and vice versa, are also implemented. Among the implemented methods there are Principal Component Analysis and its robust variant, Partial Least Squares, Continuum Power Regression, Partial Robust M-Regression, Robust Continuum Regression and Radial Basis Functions Partial Least Squares. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 277
页数:9
相关论文
共 29 条
[1]   STANDARD NORMAL VARIATE TRANSFORMATION AND DE-TRENDING OF NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA [J].
BARNES, RJ ;
DHANOA, MS ;
LISTER, SJ .
APPLIED SPECTROSCOPY, 1989, 43 (05) :772-777
[2]   A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations [J].
Baumann, K ;
Albert, H ;
von Korff, M .
JOURNAL OF CHEMOMETRICS, 2002, 16 (07) :339-350
[3]   High breakdown estimators for principal components: the projection-pursuit approach revisited [J].
Croux, C ;
Ruiz-Gazen, A .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) :206-226
[4]   Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies [J].
Croux, C ;
Haesbroeck, G .
BIOMETRIKA, 2000, 87 (03) :603-618
[5]   SIMPLS - AN ALTERNATIVE APPROACH TO PARTIAL LEAST-SQUARES REGRESSION [J].
DEJONG, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1993, 18 (03) :251-263
[6]   EXTENDING THE RELATIONSHIP BETWEEN RIDGE-REGRESSION AND CONTINUUM REGRESSION [J].
DEJONG, S ;
FAREBROTHER, RW .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1994, 25 (02) :179-181
[7]  
Hossjer 0., 1995, NONPARAMETRIC STAT, V4, P293
[8]   TRIMMED OBJECT PROJECTIONS - A NONPARAMETRIC ROBUST LATENT-STRUCTURE DECOMPOSITION METHOD [J].
HOVE, H ;
LIANG, YZ ;
KVALHEIM, OM .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 27 (01) :33-40
[9]  
HUBER P, 1981, ROUBST STAT
[10]   A fast method for robust principal components with applications to chemometrics [J].
Hubert, M ;
Rousseeuw, PJ ;
Verboven, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 60 (1-2) :101-111