Tumor-stroma interactions in pancreatic ductal adenocarcinoma

被引:487
作者
Mahadevan, Daruka
Von Hoff, Daniel D.
机构
[1] Univ Arizona, Ctr Canc, Tucson, AZ USA
[2] TGen, Phoenix, AZ USA
关键词
D O I
10.1158/1535-7163.MCT-06-0686
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The host stromal response to an invasive epithelial carcinoma is frequently called a desmoplastic reaction (DR) and is a universal feature of pancreatic ductal adenocarcinoma (PDA). This DR is characterized by a complex interplay between the normal host epithelial cells, invading tumor cells, stromal fibroblasts, inflammatory cells, proliferating endothelial cells, an altered extracellular matrix, and growth factors activating oncogenic signaling pathways by autocrine and paracrine mechanisms. Hence, the tumor microenvironment is a dynamic process promoting tumor growth and invasion through mechanisms likely to include anoikis resistance, genomic instability, and drug resistance. Cell coculture models, murine models (xenograft and genetic), and gene expression profiling studies on human PDA biopsies have identified several key molecules, such as collagen type I, fibronectin, laminin, matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitors of MMP), growth factors (transforming growth factor beta, platelet-derived growth factor, connective tissue growth factor, and hepatocyte growth factor), chemokines, and integrins as constituents of the DR. Despite these findings, it is unclear which molecular-cellular events initiate and drive desmoplasia in PDA. Accumulating evidence indicates that pancreatic stellate cells when activated switch to a myofibroblast phenotype that produces components of the extracellular matrix, MMPs, and tissue inhibitors of MMPs by activating the mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) pathway. Based on current evidence, several therapeutic strategies are been evaluated on identified potential therapeutic targets. This review summarizes our current understanding of the mechanisms that potentially drive the DR in PDA and future possibilities for therapeutic targeting of this critical process.
引用
收藏
页码:1186 / 1197
页数:12
相关论文
共 71 条
[1]   Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma [J].
Aguirre, AJ ;
Bardeesy, N ;
Sinha, M ;
Lopez, L ;
Tuveson, DA ;
Horner, J ;
Redston, MS ;
DePinho, RA .
GENES & DEVELOPMENT, 2003, 17 (24) :3112-3126
[2]   Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development [J].
Amendt, C ;
Schirmacher, P ;
Weber, H ;
Blessing, M .
ONCOGENE, 1998, 17 (01) :25-34
[3]   The plasminogen activation system in tumor growth, invasion, and metastasis [J].
Andreasen, PA ;
Egelund, R ;
Petersen, HH .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (01) :25-40
[4]   Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture [J].
Apte, MV ;
Haber, PS ;
Applegate, TL ;
Norton, ID ;
McCaughan, GW ;
Korsten, MA ;
Pirola, RC ;
Wilson, JS .
GUT, 1998, 43 (01) :128-133
[5]   Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma [J].
Armstrong, T ;
Packham, G ;
Murphy, LB ;
Bateman, AC ;
Conti, JA ;
Fine, DR ;
Johnson, CD ;
Benyon, RC ;
Iredale, JP .
CLINICAL CANCER RESEARCH, 2004, 10 (21) :7427-7437
[6]   Identification, culture, and characterization of pancreatic stellate cells in rats and humans [J].
Bachem, MG ;
Schneider, E ;
Gross, H ;
Weidenbach, H ;
Schmid, RM ;
Menke, A ;
Siech, M ;
Beger, H ;
Grünert, A ;
Adler, G .
GASTROENTEROLOGY, 1998, 115 (02) :421-432
[7]  
Barcellos-Hoff MH, 2000, CANCER RES, V60, P1254
[8]   Pancreatic cancer biology and genetics [J].
Bardeesy, N ;
DePinho, RA .
NATURE REVIEWS CANCER, 2002, 2 (12) :897-909
[9]   Tumor-associated transforming growth factor-β and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients [J].
Bellone, G ;
Turletti, A ;
Artusio, E ;
Mareschi, K ;
Carbone, A ;
Tibaudi, D ;
Robecchi, A ;
Emanuelli, G ;
Rodeck, U .
AMERICAN JOURNAL OF PATHOLOGY, 1999, 155 (02) :537-547
[10]   Characterization of integrin-tetraspanin adhesion complexes: Role of tetraspanins in integrin signaling [J].
Berditchevski, F ;
Odintsova, E .
JOURNAL OF CELL BIOLOGY, 1999, 146 (02) :477-492